MITSUBISHI

• SAFETY INSTRUCTIONS •

(Always read these instructions before using this equipment.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.

The instructions given in this manual are concerned with this product. For the safety instructions of the programmable controller system, please read the CPU module user's manual.

In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".

·

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight personal injury or physical damage.

Note that the CAUTION level may lead to a serious consequence according to the circumstances. Always follow the instructions of both levels because they are important to personal safety.

Please save this manual to make it accessible when required and always forward it to the end user.

[Designing Instructions]

• Provide safety circuits outside the PLC to ensure that the system operates safely if an external power fault or PLC failure occurs. Not doing so may cause misoutput or misoperation. (1) Configure up circuits, e.g. an emergency stop circuit, a protective circuit, interlock circuits for forward/reverse rotation and other opposite operations, and interlock circuits for machine damage prevention such as upper and lower positioning limits, outside the PLC. For an interlock circuit example, refer to the A1FXCPU User's Manual (Setup). (2) When the PLC detects either of the following faulty conditions, it stops operation and switches off all outputs. The overcurrent or overvoltage protector of the power supply module is activated. • The self-diagnostic function of the PLC CPU detects a fault such as a watchdog timer error. Faults undetectable by the PLC CPU, e.g. a fault at the I/O control section may cause all outputs to switch on. The external circuit and mechanism should be designed to ensure that the machine operates safely at such a time. For a failsafe circuit example, refer to the A1FXCPU User's Manual (Setup). (3) The output current of the service power supply for sensor differs according to the model and whether there are extension blocks or not. If overload occurs, the voltage drops automatically, PLC inputs become inoperative, and all outputs switch off. The external circuit and mechanism should be designed to ensure that the machine operates safely at such a time. (4) Some failures of relays, transistors and other devices of the output module may cause outputs to turn on or off. An external monitoring circuit should be provided to monitor output signals which may lead to a serious accident.

[Designing Instructions]

• If a current higher than the rating or an overcurrent due to a load short-circuit, etc. kept on flowing for a long time in the outputs, fuming or combustion may occur. To prevent this, provide an external safety circuit such as a fuse.
• Configure up a circuit so that the external supply power is switched on after the power of the PLC is switched on
If the external supply power is switched on first, an accident may occur due to misoutput or misoperation.
 When a communication fault occurs in inter-PLC link, the faulty station retains the data prior to the occurrence of the communication fault.
Using communication status data, make up an interlock circuit in the sequence program to ensure that the system operates safely.
Not doing so may cause an accident due to misoutput or misoperation.
For an interlock circuit example, how to check a faulty station, and operating status at
communication fault occurrence, refer to Section 5.2 in this manual.
• Do not bundle control or communication cables with the main circuit, power or other lines or lay
them near these lines. As a guideline, separate the cables at least 100mm (3.94 inch).
A failure to do so can cause misoperation due to noise.
When controlling items like lamp load, heater or solenoid valve using an output module, large
current (approximately ten times greater than that present in normal circumstances) may flow
when the output is turned OFF to ON.
Take measures such as replacing the module with one having sufficient rated current.

[Installation Precautions]

- Use the PLC in an environment that conforms to the general specifications given in this manual. Not doing so can cause an electric shock, fire, misoperation or product damage or deterioration.
- Completely turn off the external power supply before loading or unloading the module. Not doing so could result in electric shock or damage to the product.
- Do not touch the conductive areas and electronic parts of the module directly. Doing so can cause the module to misoperate or fail.

[Wiring Instructions]

- Before starting mounting, wiring or other work, always switch power off externally in all phases. Not doing so may cause an electric shock or product damage.
- When switching power on or starting operation after mounting, wiring or other work, always fit the supplied terminal cover to the product.

Not doing so can cause an electric shock.

CAUTION Be sure to ground the FG terminals and LG terminals to the protective ground conductor. Not doing so could result in electric shock or erroneous operation. • Wire the module correctly after confirming the rated voltage and terminal arrangement of the product. A fire or failure can occur if the power supply connected is different from the rating or wiring is incorrect. • Do not connect the A1FXCPU and extension module service power supply outputs in parallel. Doing so can cause the power supply module to overheat, leading to a fire or failure. 24+ • Do not supply external power to the +24V/24G terminals of the A1FXCPU and the l terminal of the extension module. Also, do not wire the empty terminal (NC) of the A1FXCPU and the empty terminal L the extension module externally. Doing so may cause product damage. • Tighten the terminal screws to the specified torque. Undertightening can cause a short circuit, fire or misoperation. Overtightening can cause a drop, short circuit or misoperation due to damaged screws or module. Ensure that foreign matters such as chips and wire off-cuts do not enter the module. They can cause a fire, failure or misoperation. • Do not connect multiple power supply modules to one module in parallel. The power supply modules may be heated, resulting in a fire or failure.

[Starting and Maintenance Precautions]

- Do not touch the terminals while power is on. This can cause an electric shock or misoperation.
- Connect the battery correctly. Do not recharge, disassemble, heat, short or solder the battery or throw it into fire.

Improper handling of the battery may result in injury or fire due to heating, burst, combustion, etc.

• Before starting cleaning or terminal screw retightening, always switch power off externally in all phases.

Not doing so can cause an electric shock.

Overtightening can cause a drop, short circuit or misoperation due to damaged screws or module.

• Before starting online operation with the peripheral connected to the running CPU module (especially program modification, forced output, operating status change), carefully read the manual and fully ensure safety.

Not doing so can cause machine damage or accident due to operational mistakes.

- Use any radio communication device such as a cellular phone or a PHS phone more than 25cm (9.85 inch) away from the PLC. Not doing so can cause a malfunction.
- Do not disassemble or modify each module. This can cause a failure, misoperation, injury or fire.
- Completely turn off the external power supply before loading or unloading the module. Not doing so could result in electric shock or damage to the product.
- Do not drop or give an impact to the battery installed in the module.
 Otherwise the battery will be broken, possibly causing internal leakage of electrolyte. Do not use but dispose of the battery if it has fallen or an impact is given to it.
- Always make sure to touch the grounded metal to discharge the electricity charged in the electricity charged in the body, etc., before touching the module.
 Failure to do say cause a failure or malfunctions of the module.

[Disposal Precautions]

• When disposing of this product, treat it as industrial waste.

[Transportation Precautions]

• When transporting lithium batteries, make sure to treat them based on the transport regulations. (Refer to the A1FXCPU User's Manual (Setup) for details of the controlled models.)

Revisions

*The manual number is noted at the lower left of the back cover.

Print Date	*Manual Number	Revision			
Feb., 1998	SH(NA)-4002-A	First edition			
Dec., 2005	SH(NA)-4002-B	Partial correction SAFETY PRECAUTIONS, Manual Makeup, Related Manuals, CONTENTS, Section 2.2.1, 2.2.2, 2.3.2, 2.7, 2.8, 3.2.2, 3.3, 5.1, 5.3.5, Appendix 4.1, Appendix 4.2 Addition WARRANTY Deletion			
Sep., 2006	SH(NA)-4002-C	Partial correction Section2.1.5, 2.1.6, Appendix 4.1, Appendix 4.2			
Jul., 2007	SH(NA)-4002-D	Partial correction Section 2.8			

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 1998 Mitsubishi Electric Corporation

[Manual Makeup]

There are three different manuals related to the A1FXCPU: setup, function description and maintenance manuals.

1) A1FXCPU user's manual (Setup)

This manual provides procedures from product and accessory checkup to installation and wiring to be followed after you have purchased the A1FXCPU and unpacked the package.

The setup manual describes the following items.

- · A1FXCPU performances (CPU section, power supply section, built-in functions)
- · Names of parts
- · Settings of parts (hardware settings)
- · I/O number assignment
- · EMC Directive, Low Voltage Directive
- · Installation of A1FXCPU
- · External wiring
- \cdot Outline dimension drawings
- 2) A1FXCPU user's manual (Function description)

This manual includes the explanation, data setting and programming of the built-in functions added to the A1FXCPU, I/O number assignment needed for I/O control, methods of communication with special modules/special blocks, error codes and other information.

The function description manual describes the following items.

- · System configuration
- · Performances of A1FXCPU (CPU section, power supply section, built-in functions)
- · Built-in functions of A1FXCPU (simple inter-PLC link, simple positioning, high-speed counter, external interrupt)
- · I/O number assignment
- \cdot Communication with special modules/special blocks
- · Error codes
- · Special relays, special registers
- \cdot Outline dimension drawings
- 3) A1FXCPU user's manual (Maintenance)

This manual explains the inspection of a system using the A1FXCPU and troubleshooting at error occurrence.

- · Names of parts
- · Settings of parts
- · Maintenance and inspection
- · Troubleshooting
- \cdot Special relays, special registers

Refer to ACPU/QCPU-A (A mode) programming manuals for the instructions needed for devices and programming of the A1FXCPU, and to GX Developer operating manuals for peripheral operation to be performed for programming.

About This Manuals

The following product manuals are available. Please use this table as a reference to request the appropriate manual as necessary.

Related Manuals

Manual Name	Manual No. (Model Code)
Type A1FXCPU module user's manual (Setup) Provides the specifications, installation, wiring and other information of the module for use of the A1FXCPU. (Option)	IB-66839 (13JL57)
Type A1FXCPU module user's manual (Maintenance) Provides maintenance/inspection and troubleshooting procedures of the module for use of the A1FXCPU. (Option)	SH-4003 (13JL58)
ACPU/QCPU-A (A mode) Programming Manual (Fundamentals) Offers programming methods, device names, parameters, program types, memory area makeup, etc. needed to write programs. (Option)	IB-66249 (13J740)
ACPU/QCPU-A (A mode) Programming Manual (Common Instruction) Programming ManualGives how to use sequence, basic and application instructions and microcomputer programs. (Option)	IB-66250 (13J741)
Type MELSAP-II Programming Manual Provides specifications, functions, instructions, programming methods, etc. needed when the MELSAP-II is used for programming with SFC programs. (Option)	IB-66361 (13JF40)

POINT

For the FX series, refer to the manual you use.

CONTENTS

About the Manuals

1. INTRODUCTION ······	…1-1 to 1-5
1.1 Features	
1.2 Functions Built in the A1FXCPU	
1.3 Instructions for Use of the A1FXCPU	1-3
1.4 Packing List	
2. PERFORMANCE	·2-1 to 2-29
2.1 Performance of the CPU Section	2-1
2.1.1 CPU section performance list	2-1
2.1.2 Overview of operation processing	2-3
2.1.3 Operation processing in RUN, STOP and PAUSE modes	
2.1.4 Operation processing at occurrence of an instantaneous power failure	2-5
2.1.5 Self-diagnosis	
2.1.6 Parameter setting range list	
2.1.7 Memory capacity (main program, file register, comment, etc.) setting	2-10
2.2 Performance of the Power Supply Section	2-12
2.2.1 Power supply section performance list	2-12
2.2.2 Number of extension points and 24VDC service power supply capacity	2-14
2.2.3 Number of special extension modules and blocks and 5VDC power supply capac	ity 2-16
2.3 Performance of Simple Inter-PLC Link	2-18
2.3.1 Simple inter-PLC link performance list	2-18
2.3.2 Interface specifications	2-19
2.3.3 Specifications of the twisted pair cable	2-20
2.4 Performance of Simple Positioning	2-21
2.4.1 Simple positioning performance list	2-21
2.4.2 Interface specifications	2-22
2.4.3 Output specifications ·····	2-23
2.5 Performance of the High-Speed Counter	2-24
2.5.1 High-speed counter performance list ·····	2-24
2.5.2 Interface specifications	2-25
2.6 Performance of the External Interrupt Function	2-26
2.6.1 External interrupt function performance list	2-26
2.6.2 Interface specifications	2-27
2.7 Terminal Arrangement of the Built-in Function Connector	2-28
2.8 Performance Specifications of the Terminal Block	2-29
3. SYSTEM CONFIGURATION	···3-1 to 3-9
3.1 Overall Configuration	3-1
3.2 System Configuration Instructions	3-3
3.2.1 Hardware ·····	3-3
3.2.2 Software packages ······	3-6
3.3 System Equipment List ·····	

4. NAMES OF PARTS AND THEIR SETTINGS	4-1 to 4-4
4.1 Names of Parts ······	4-1
4.2 Settings	
4.2.1 RAM/E ² PROM operation setting ······	4-3
4.2.2 Write protect switch setting ·····	
4.3 Latch Clear Operation	
5. FUNCTIONS	······5-1 to 5-79
5.1 Function List	
5.2 Simple Inter-PLC Link ······	
5.2.1 Instructions for simple inter-PLC link	
5.2.2 Procedure for simple inter-PLC link	
5.2.3 Wiring for simple inter-PLC link	5-6
5.2.4 Data to be set for simple inter-PLC link	
5.2.5 Link parameter setting method	5-10
5.2.6 Checking for errors in simple inter-PLC link	5-13
5.2.7 Loopback self-check	5-18
5.3 Simple positioning control function	5-20
5.3.1 Instructions for the simple positioning control function	5-21
5.3.2 Procedure for simple positioning control	5-22
5.3.3 Wiring for simple positioning control	5-23
5.3.4 Setting for simple positioning control (setting of positioning data)	5-28
5.3.5 Pulse output starting (positioning starting) and stopping signals	5-33
5.3.6 Confirming the positioning statuses	5-39
5.3.7 Checking for errors in simple positioning control	
5.3.8 Program examples ·····	5-42
5.4 High-Speed Counter Function	5-51
5.4.1 Instructions for the high-speed counter function	5-52
5.4.2 Wiring for use of the high-speed counter function	5-53
5.4.3 Special relays/special registers for use of the high-speed counter function	5-54
5.4.4 Preset function	5-61
5.4.5 Ring counter function	5-64
5.4.6 Count disable function	5-68
5.4.7 Latch counter function ······	5-69
5.4.8 Coincidence output function ·····	5-70
5.5 External Interrupt Function	5-73
5.5.1 Instructions for the external interrupt function	5-73
5.5.2 Wiring for use of the external interrupt function	5-74
5.5.3 Setting for executing the external interrupt function	5-75
5.5.4 Interrupt processing timing ·····	5-77
6. I/O NUMBER ASSIGNMENT ······	6-1 to 6-3
6.1 What Are I/O Numbers? ·····	
6.2 I/O Number Assignment ·····	

7. COMMUNICATION WITH SPECIAL MODULE/SPECIAL BLOCK7-1 to 7-7
7.1 Reading 1- or 2-word data from the special module/special block
FROM, FROMP, DFRO, DFROP ·························7-2
7.2 Writing 1- or 2-word data to the special module/special block TO, TOP, DTO, DTOP
8. ERROR CODE LIST8-1 to 8-4
APPENDICES Appendix-1 to Appendix-26
Appendix 1 General Specifications Appendix-1
Appendix 2 Outline Dimension Drawings Appendix-3
Appendix 2.1 A1FXCPU module ·······Appendix-3
Appendix 3 Available Instructions and Processing Time
Appendix 3.1 Sequence instructions Appendix-4
Appendix 3.2 Basic instructions Appendix-7
Appendix 3.3 Application instructions Appendix-11
Appendix 4 List of Special Relays and Special Registers
Appendix 4.1 List of Special relays Appendix-15
Appendix 4.2 List of Special registers ······ Appendix-20

1. INTRODUCTION

The A1FXCPU is a CPU module including a CPU, power supply and I/O (input: 14 points, output: 4 points) in one body and capable of control using A series instructions. The A1FXCPU incorporates the simple inter-PLC link function, simple positioning function, high-speed counter function and interrupt input function. The FX series extension modules, extension blocks, special modules and special blocks can be connected to the A1FXCPU to control them.

1.1 Features

The A1FXCPU module has the following features.

- CPU module having a power supply, CPU and I/O in one body The A1FXCPU contains the power supply, CPU, I/O (input: 14 points, output: 4 points) and program memories (RAM, E²PROM).
- (2) Special functions incorporated in the CPU module

The CPU modules incorporates the simple inter-PLC link function, simple positioning function, high-speed counter function and interrupt input function in addition to the A2SHCPU functions.

- (3) A series instructions available The A series peripheral can be used to perform programming with the A series instructions.
- (4) FX series extension modules, extension blocks, special modules and special blocks available

The FX_{2N} and FX_{0N} series extension modules, extension blocks and special blocks can be used to configure up a compact system.

The FX₁ and FX₂ series extension modules and extension blocks can also be connected to the A1FXCPU to make up a system.

- (5) Data link with the FX_{2N} and FX_{0N} series The simple inter-PLC link function allows bit data and word data to be communicated with the FX_{2N} and FX_{0N} series.
- (6) CE Mark compliant product

The A1FXCPU complies with the CE Mark.

For full information, refer to the A1FXCPU User's Manual (Setup).

1. INTRODUCTION

1.2 Functions Built in the A1FXCPU

The A1FXCPU has the following built-in functions.

(1) Simple inter-PLC link function

Up to eight A1FXCPU modules and FX_{2N} and FX_{0N} series main modules can be connected by shielded, twisted pair cables to communicate bit and word data.

(2) Simple positioning function

One servo amplifier and one stepping motor driver may be connected to the A1FXCPU to do simple positioning with max. 60kpps pulses output.

(3) High-speed counter function

Two encoders may be connected to the A1FXCPU to count max. 60kpps pulses input. When the set value matches the count value, an interrupt program (I12, I13) can be run.

(4) Interrupt input function

By switching on the interrupt terminals of the A1FXCPU external connector, interrupt programs (I0 to I5) can be run by the A1FXCPU.

1.3 Instructions for Use of the A1FXCPU

When using the A1FXCPU, follow these instructions.

(1) Switching between RAM and E^2 PROM

The A1FXCPU incorporates RAM and E^2 PROM and allows ROM operation (E^2 PROM) to be performed by setting the DIP switch to the corresponding position. (The DIP switch is factory-set for RAM operation.) For details, refer to Section 4.2.1.

- (2) Assignment of I/O points
 - (a) The A1FXCPU controls the extension module/extension block inputs and outputs in blocks of 16 points.

If the input extension module used is of 8 points, the number of I/O points is calculated as 16 points.

Use the number of occupied points in Table 3.3 to calculate the number of I/O points used with the A1FXCPU.

- (b) One special module or special block occupies 8 I/O points. Hence, the number of points used for special modules/special blocks is decremented by 8 points per special module/special block. However, the FX0N-16NT, FX-16NT and FX-16NP do not occupy 8 points.
- (3) Assignment of I/O numbers
 - (a) The I/O numbers of the A1FXCPU are controlled in hexadecimal (X/Y□0 to X/Y□F).
 - The I/O numbers always begin with "X/Y^{_0}".
 - (b) One special module or special block occupies the number of I/O points in Table 3.3.

The I/O number assignment of a special module or special block having 8 I/O points in Table 3.3 should be set in the same way as when there are no special modules and special blocks.

Since the FX_0N-16NT, FX-16NT and FX-16NP do not occupy 8 points, assign their I/O numbers as in the I/O assignment of I/O blocks.

The FX_{0N}-16NT-S3 and FX-16NT-S3 occupy 8 points and their I/O numbers should be assigned as in the I/O number assignment of I/O blocks.

- (c) For details of I/O number assignment, refer to Chapter 6.
- (4) Communication with special module/special block

The FROM/TO instructions are used for communication with a special module/ special block. Note that the ways of specifying the FROM/TO instructions are different.

For full information, refer to Chapter 7.

(5) Instructions for use of special modules/special blocks

The following special modules/special blocks continue operating normally when the A1FXCPU is reset or an operation error occurs.

When it is necessary to stop their operations in user's system configuration, make up an interlock circuit outside the PLC.

- (a) Special module/special block operations
 - FX_{0N}-3A : Analog outputs hold the RUN mode output states.
 - FX-1GM : Continues positioning operation.
 - FX-10GM : Continues positioning operation.
 - FX-20GM : Continues positioning operation.
- (b) Interlock circuit

Configure up a circuit to provide an interlock (stop external equipment operation) when the output (Y) used as an interlock turns off.

(The output (Y) turns off when the A1FXCPU is reset or an operation error occurs.)

POINT

The buffer memories of the above special modules and special block cannot be initialized by the RESET switch of the A1FXCPU. Switch power off, then on again or use a sequence program to initialize them.

(6) Type setting at startup of the peripheral When using a peripheral for the A1FXCPU programming, start up the peripheral with the PLC type "A1FX".
When using the SW(2NX/I)/D CDBA or earlier start up with "A2"

When using the SW3NX/IVD-GPPA or earlier, start up with "A2".

(7) FX series peripheral unavailable

For the A1FXCPU, the A series peripheral is used to perform programming with the A series instructions.

The FX series peripheral cannot be used for programming.

1. INTRODUCTION

1.4 Packing List

After unpacking, confirm that there are the following products.

Product	Quantity
A1FXCPU module	1
32-pin connector	1
Battery (A6BAT)	1
Terminal resistor (110Ω, 1/2W)	1
I/O label	1
Link station number label	1

2. PERFORMANCE

2.1 Performance of the CPU Section

This section provides the CPU section performance of the A1FXCPU.

2.1.1 CPU section performance list

Table 2.1 gives the CPU section performance list of the A1FXCPU.

Item		Performance			
Control method		Repeated operation (using stored program)			
I/O control method		Refresh system			
Program language		Language dedicated to sequence control			
		Relay symbol words, lo	gic symbolic words, MELSAP-	II (SFC)	
		Sequence instruction	: 26		
Number of instructions (types)		Basic instruction	: 131		
		Application instruction	: 93		
Processing speed		0.25			
(sequence instruction, μ s/step)		0.25			
Number of I/O points	(points)	224 (X/Y20 to 10FF)			
Watchdog timer	(ms)) 10 to 2000			
Maman (an acity (the star)		Built-in RAM : 64			
	(K Dytes)	Built-in E ² PROM : 32 (E ² PROM service life for writing: 100000 times)			
		Main sequence : Max. 14			
	(k sieps)	Sub sequence : None			
Internal relay (M)	(points)	1000 (M0 to 999) A total of 2048 points of M			
Latch relay (L)	(points)	1048 (L1000 to 2047)	and L are commonly used. $ floor$	Oct in parameters	
Step relay (S)	(points)	0	Must not be set.		
Link relay (B)	(points)	1024 (B0 to 3FF)			
		256			
Timor (T)	(100ms timer: Set time 0.1 to 3276.7s (T0 to 199)			
Timer (T)	(points)	10ms timer: Set time 0.01 to 327.67s (T200 to 255)			
		100ms retentive timer: Set time 0.1 to 3276.7s			
		256			
Counter (C)	(points)	Normal counter: Setting range 1 to 32767 (C0 to 255)			
		Interrupt program counter: Setting range 1 to 32767			
		(Counter used in interrupt program)			
Data register (D)	(points)	1024 (D0 to 1023)			

Table 2.1 Performance List

2. PERFORMANCE

Item		Performance			
Link register (W)	(points)) 1024 (W0 to 3FF)			
Annunciator (F)	(points)) 256 (F0 to 255)			
File register (R)	(points)	Max. 4096 (R0 to 4095)			
Accumulator (A)	(points)) 2 (A0, A1)			
Index register (V, Z)	(points)) 2 (V, Z)			
Pointer (P)	(points)) 256 (P0 to 255)			
Interrupt pointer (I)	(points)	11 (10 to 15, 112, 113, 129 to 131)			
Special relay (M)	(points)) 256 (M9000 to 9255)			
Special register (D)	(points)) 256 (D9000 to 9255)			
Number of comment points					
(in increments of 64 points)	(points)	Max. 3648			
Solf disgnostic function		Watchdog timer error, memory error, CPU error, I/O error, battery error			
Self-diagnostic function		detection, etc.			
Operation mode at error occurrence	<u>;</u>	Stop or continue selected			
Output mode switching at the time	of STOP	Before-STOP operation status re-output or output after operation			
to RUN		execution is selected.			
		Year, month, day, hour, minute, second, day of the week			
		(automatic judgment of leap year)			
Clock function		Accuracy -3.2 to + 3.5s (TYP. +2.1s) / d at 0 °C			
		-3.4 to + 5.3s (TYP. +2.1s) / d at 25 °C			
		-13.4 to + 3.6s (TYP3.2s) / d at 55 °C			
Permissible instantaneous power fa	ilure				
period	(ms)	10			
Outline dimensions (r	nm)(inch)) 130(5.12)(W) × 90(3.55)(H) × 87(3.43)(D)			
Weight	(kg)(lb)	0.56(1.24)			

Table 2.1 Performance List (Continued)

2.1.2 Overview of operation processing

This section provides the overview of processing from power-on of the A1FXCPU to run of the sequence program.

A1FXCPU processing is roughly divided into the following.

(1) Initial processing

Pre-processing for execution of sequence operation. Performed only once when power is switched on or the CPU is reset by the RESET switch.

- (a) When there is a link setting program, the link parameters for simple inter-PLC link are registered. (Refer to Section 5.2.)
- (b) The extension module/extension block outputs are reset and initialized.
- (c) The unlatched areas of data memory are initialized (bit devices are turned off and word devices set to 0).Note that file registers are not initialized.
- (d) The I/O addresses of the extension modules/extension blocks connected to the A1FXCPU are allocated automatically.
- (e) Self-diagnostic check is performed on parameter setting, operation circuit, etc. (Refer to Section 2.1.4.)
- (2) Sequence program operation processing The sequence program written to the A1FXCPU is run from step 0 to the END (FEND) instruction.
- (3) END processing

Post-processing performed to terminate single sequence program operation processing and return sequence program run to step 0.

- (a) Self-diagnostic check is made for power-off, I/O module verify error, battery low, etc. of the extension modules/extension blocks. (Refer to Section 2.1.4.)
- (b) The present values of timers and counters are updated and their contacts switched on/off.

(For more information on the timers and counters, refer to the ACPU Programming Manual (Basics).)

- (c) When the sampling trace point is per scan (after execution of the END instruction), the statuses of preset devices are stored into the sampling trace area.
- (d) When a refresh request is given during use of simple inter-PLC link, link refresh processing is carried out.
- (e) When the simple positioning function is used, pulse output start/stop processing is performed.
- (f) The extension modules/extension blocks are I/O refreshed (ON/OFF data updated). (For details of refresh processing, refer to the ACPU Programming Manual (Basics).)

2.1.3 Operation processing in RUN, STOP and PAUSE modes

The A1FXCPU has three different operation modes: "RUN mode", "STOP mode" and "PAUSE mode".

This section describes the operation processing of the PLC CPU performed in each mode.

(1) Operation processing in RUN mode

In the RUN mode, sequence program operation is repeated in sequence of step 0 to END (FEND) instruction to step 0.

When entering the RUN mode, the CPU outputs the output status saved in the STOP mode according to the STOP \rightarrow RUN output mode setting in the parameter. Processing time up to the start of sequence program operation, which depends on the system configuration, is as follows:

- When power is switched on or the CPU is reset by RESET switch : 2 to 3s
- When the CPU is switched from STOP to RUN : 1 to 3s
- (2) Operation processing in STOP mode
 - In the STOP mode, sequence program operation is stopped by:
 - Moving the RUN/STOP switch to the STOP position.
 - Executing the STOP instruction in the sequence program.
 - Performing remote STOP from the peripheral.
 - Turning on the remote STOP contact. *1

When entering the STOP mode, the A1FXCPU saves the output status internally and turns off all extension module/extension block outputs (Y). *2 Data memories other than the outputs (Y) are latched.

(3) Operation processing in PAUSE mode

In the PAUSE mode, the outputs (Y) and data memories are latched and sequence program operation is stopped by:

- Performing remote PAUSE from the peripheral.
- Turning on the remote PAUSE contact and PAUSE enable contact (M9040). *1

POINT

- In any of the RUN, STOP and PAUSE modes, the A1FXCPU is making:
- Communication with the peripheral
- Refresh processing of extension modules/extension blocks
- Link refresh of simple inter-PLC link

Therefore, I/O monitoring and test operation can be performed from the peripheral equipment in the STOP and PAUSE modes.

REMARKS

- *1: Set the remote STOP and remote PAUSE contacts in parameters from the peripheral.
- *2: When the peripheral is used to monitor the outputs (Y), they all turn off.

2.1.4 Operation processing at occurrence of an instantaneous power failure

The A1FXCPU detects an instantaneous power failure when the input source voltage supplied to the power supply section of the A1FXCPU drops below the specified value.

On detection of an instantaneous power failure, the A1FXCPU performs the following operation processing.

- (1) Instantaneous power failure shorter than permissible instantaneous power failure time
 - (a) When an instantaneous power failure has occurred, the A1FXCPU holds the output status and suspends operation processing.
 - (b) When an instantaneous power failure is cleared, the A1FXCPU resumes operation processing.

At this time, it adds 1 to the AC down detection storing special register (D9005).

(c) If operation is being suspended due to the occurrence of an instantaneous power failure, the A1FXCPU continues the timing of the watchdog timer (WDT). For example, when the watchdog timer setting is 200ms, a watchdog timer error occurs if an instantaneous power failure of 10ms occurs at the scan time of 195ms.

Fig. 2.1 Operation Processing at Occurrence of Instantaneous Power Failure

(2) Instantaneous power failure longer than permissible instantaneous power failure time

The A1FXCPU makes an initial start.

When making an initial start, the A1FXCPU performs the same operation processing as when power is switched on or the CPU is reset by the RESET switch.

POINT

When the AC down detection storing special register (D9005) is incremented, check the power supplied to the A1FXCPU.

2.1.5 Self-diagnosis

Self-diagnosis is a function that the A1FXCPU self-checks for a error.

The self-diagnostic function of the A1FXCPU detects an error which occurs at power-on or during run and displays the corresponding error message and stops operation to prevent a PLC malfunction and perform preventive maintenance.

The A1FXCPU has two different operation modes for self-diagnosed errors: operation stop mode and operation continuation mode.

For some errors, the continuation mode may be changed into the stop mode. (Refer to Table 2.2.)

The occurrence and definition of the error detected are stored into the corresponding special relay (M) and special register (D). (Refer to Appendix 4.)

Especially in the continuation mode, use the special relays and special registers in the program to prevent PLC or mechanical system malfunctions.

In the operation stop mode, the A1FXCPU stops operation and switches off all outputs (Y) on detection of an error.

In the operation continuation mode, the A1FXCPU runs the program with the exception of a faulty part.

When an I/O module verify error has occurred, the A1FXCPU continues operation at the I/O addresses prior to the occurrence of the error.

Table 2.2 on the next page indicates self-diagnosed errors.

2. PERFORMANCE

	Diagnosis	Diagnosis Timing	CPU Status	RUN LED Status	Error Display of Peripheral	Error Code		
	Instruction code check	 When that instruction is executed 	Stop	Flicker	INSTRCT CODE ERR.	10		
	Parameter setting check	 When power is switched on or CPU is reset When (STOP/PAUSE) is switched to (RUN) 			PARAMETER ERROR	11		
	No END instruction	When (STOP/PAUSE) is switched to (RUN)			MISSING END INS.	12		
Memory error	Instruction execution disable	 When CJ, SCJ, JMP, CALL(P) or FOR-NEXT instruction is executed When (STOP/PAUSE) is switched to (RUN) 			CAN'T EXECUTE (P)	13		
	Format (CHK) check	When (STOP/PAUSE) is switched to (RUN)	CHK FORMAT ERR.	14				
	Instruction execution disable	 When interrupt occurs When (STOP/PAUSE) is switched to (RUN) 			CAN'T EXECUTE (I)	15		
	RAM check	 When power is switched on or CPU is reset When M9084 is switched on in STOP mode 			RAM ERROR	20		
CPU error	Operation circuit check	When power is switched on or CPU is reset	Stop	Flicker	OPE CIRCUIT ERR.	21		
	Watchdog error monitor	When END instruction is executed			WDT ERROR	22		
	END instruction not executed	When END instruction is executed			END NOT EXECUTE	24		
	Endless loop execution	Always			WDT ERROR	25		
	Main CPU check	Always			MAIN CPU DOWN	26		
I/O error	I/O module verify (Default: Stop)	When END processing is executed (Not checked when M9084 is on)	Stop	Flicker	UNIT VERIFY ERR.	31		
	Power off (Default: Continuation)	When END processing is executed (Not checked when M9084 is on)	Run	On	FUSE BREAK OFF	32		
	Control bus check	When FROM/TO instruction is executed			CONTROL BUS ERR.	40		
	Special function module error	When FROM/TO instruction is executed			SP. UNIT DOWN	41		
	I/O interrupt error	 When interrupt occurs 	Stop	Flicker	I/O INT. ERROR	43		
Special function module error	Special function module assignment error	 When power is switched on or CPU is reset When (STOP/PAUSE) is switched to (RUN) 			SP. UNIT LAY ERR.	44		
	Special function module access error (Default: Stop)	 When FROM/TO instruction is executed 	Stop Run	Flicker	SP. UNIT ERR.	46		
	Link parameter error	 When power is switched on or CPU is reset When (STOP/PAUSE) is switched to (RUN) 	Run	On	LINK PARA ERROR	47		
Battery	Battery error	 Always (Not checked when M9084 is on) 	Run	On	BATTERY ERROR	70		
Operation error (Default : Contin	nuation)	When corresponding instruction is executed	Stop Run	Flicker	OPERATION ERROR	50		

Tale 2.2 Self-Diagnosis List

REMARKS

- 1) Two modes described in the "CPU Status" and "RUN LED Status" columns in Table 2.2 indicate that they can be changed by parameter setting from the peripheral.
- 2) The messages given in "Error Message of Peripheral" of Table 2.2 are displayed when the peripheral is used to make PLC diagnosis.
- 3) *: FUSE BREAK OFF is displayed in the peripheral device.

2.1.6 Parameter setting range list

Parameters are used to assign the A1FXCPU's user memory, set various functions, and specify device ranges.

The set data is stored in the first 3k bytes of the user memory area.

Default (initial) parameter values as indicated in Table 2.3 may be selected or the user may change the setting ranges according to the purposes of use from the peripheral device.

Item		Default Value	Setting Range	Remarks
Main sequence program (k steps)		6	6 1 to 14	
File register (k bytes)		None	None 0 to 4	
Comment capacity (points)		None 0 to 3648		
Status latch	(k bytes)	None	0/8 to 16	
Sampling trace	(k bytes)	None	0/8	
	Link rates (D)		B0 to B3FF	
	LINK relay (B)		(in units of 1 point)	
	Timor (T)		T0 to T255	
		• Only I 1000 to I 2047 are	(in units of 1 point)	
Latch range setting	Counter (C)	latched	C0 to C255	
Later range setting		None for other devices	(in units of 1 point)	
	Data register (D)		D0 to D1023	
			(in units of 1 point)	
	Link register (W)		W0 to W3FF	
	(1)		(in units of 1 point)	
Internal relav (M). la	tch relav (L), step relav	M0 to M999		Step relay (S) must not
(S) setting		L1000 to L2047	M/L0 to M/L2047	be set. (If set, parameter
		None for S	T () 0 0 () () () () () () () () () (error occurs.)
Timer setting		T0 to T199 (100ms)	Total 256 points of 100ms, 10ms	
		1200 to 1255 (10ms)	and retentive timers	
			interrupt counters (in units of 8	
Interrunt counter set	ling	None	niterrupi counters (in units of o	
interrupt counter set	ung	NONE	These counters are processed in	
			numerical order	
I/O number assignment		None	None	Setting is invalid.
			X0 to XFF	
			1 point each for RUN and STOP	
Remote RUN/STOP,	, PAUSE contact		contacts.	X100 to X1FF must not
setting			(Setting of PAUSE contact alone	be set.
			is not allowed)	
	Fuse			
One set is a mode st	I/O module verify error			
Operation mode at	Operation error	Stop	Stop/continuation	
	Special function			
	module check error			
		Operation status prior to	Output prior to stop or after	
	mode	stop is re-output.	operation execution.	
Print title registration		None	Up to 128 characters	
Keyword registration		None	Hexadecimal (0 to 9, A to F)	
			Max. 6 digits	
Link range setting		None	None	Setting is invalid.

Table 2.3 Parameter Setting Range List

*:Operation mode setting at error occurrence in the peripheral device parameters is done with FUSE BREAK OFF.

2.1.7 Memory capacity (main program, file register, comment, etc.) setting

The A1FXCPU is standard-equipped with 64k byte RAM and 32k byte E^2 PROM. The DIP switch of the A1FXCPU is used to switch between RAM and E^2 PROM. (For the DIP switch setting, refer to Section 4.2.1.)

The following data are stored in 64k byte RAM.

- Parameters
- T/C set values
- Main program
- Sampling trace data
- Status latch data
- File registers
- Comments

32k byte E^2 PROM is used for ROM operation of the A1FXCPU and can store the following data.

- Parameters
- T/C set values
- Main program
- (1) Memory capacity calculation

Use RAM/E²PROM after determining stored data types and memory capacities by parameter setting.

Use Table 2.4 to calculate memory capacities.

Table 2.4 Parameter Setting and Memory Capacity List

ltem		Setting Increments	Memory Capacity	Storage into E ² PROM	Remarks
Parameters, T/C	set values		4k bytes (fixed)		
	Sequence program	1k step	[Main sequence program capacity] × 2k bytes	Allowed	
Main program	Microcomputer program	2k bytes	Main microcomputer program capacity		
Sampling trace		No/yes	0/8k bytes	Disallowed	
Status latch	Data memory	No/yes	0/8k bytes	Disellowed	Memory capacity for file register status latch is the
	File registers	No/yes	File register memory capacity k bytes	Disallowed	file register capacity set in parameter.
File registers		1k points	File register x 2k bytes	Disallowed	
Comments		64 points	(Comment points) 64 + 1k byte	Disallowed	Comment capacity setting occupies 1k byte in system.

- (2) Sequence of data storage into user memory
 - (a) Various data set in parameters are stored in the sequence shown in Fig. 2.2.
 - (b) Before performing write protect, make sure that the sampling trace, file register and other areas where data is written during sequence program execution are not in the write protect range.
 - (c) If the main program is stored in E²PROM, the system uses the area where the main program was stored in the RAM operation mode.

Hence, if $E^2 PROM$ operation is performed, the sampling trace, status latch, file register and comment capacities cannot be increased.

Fig. 2.2 Sequence of Data Storage into User Memory

(3) Procedure for writing parameters, T/C set values and sequence program to ${\rm E}^{2}{\rm PROM}$

Write parameters, T/C set values and sequence program to E^2PROM in the following procedure.

• On the peripheral, read the parameters, T/C set values and sequence program from RAM.

(Read from RAM is not required when above data were stored on the programming peripheral in the RAM operation mode.)

- Move the DIP switch to the "ROM" position.
- Switch power on again.
- Write the parameters, T/C set values and sequence program from the peripheral to E²PROM.

REMARKS

1) In Fig. 2.2, parameters occupy 3k bytes and T/C set values 1k byte.

1 to 14k steps (2 to 28k bytes) can be set to the sequence program.

2.2 Performance of the Power Supply Section

This section provides the power supply section performance of the A1FXCPU.

2.2.1 Power supply section performance list

Table 2.5 gives the power supply section performance list of the A1FXCPU.

Item	Performance			
	100-240VAC +10% -15%			
Input voltage	(85-264VAC)			
Input frequency	50/60Hz ±3Hz			
Input apparent power	100VA			
Inrush current	50A 5ms at input of 240VAC *4			
	5VDC 1.2A/24VDC 0.41A [MAX] (for CPU, I/O)			
Rated output "I	24VDC 0.43A (for external service power supply) *2, *3			
Our rest protection	5VDC 1.5A or more/24VDC 0.65A or more			
	(total for insulation and non-insulation) *5			
Overvoltage protection	5.5 to 6.5vDC *6			
Efficiency	65% or more			
Power indication	POWER LED indication			
Terminal screw size	M3×8			
Applicable wire size	0.3 to 2mm ²			
	• RAV1.25-3 R1.25-3 (in conformance with JIS C 2805)			
	[Applicable wire size: 0.3 to 1.25mm ²]			
Applicable solderless terminal	• V2-MS3 (Japan Solderless Terminal Mfg. Co., Ltd.),			
	RAP2-3SL RAP2-3.5SL (Japan Terminal Co., Ltd.)			
	[Applicable wire size: 1.25 to 2mm ²]			
Permissible instantaneous power failure period	Within 10ms *7			

Table 2.5 Performance List

*1: For details, refer to Sections 2.2.2 and 2.2.3.

*2: For external service power supply : 0.3A For built-in functions : 0.13A Total 0.43A

*3: 24VDC can be used up to a total of 0.6A for the CPU, I/O and external service power supply.

*4: Inrush current

If the power supply module is re-powered ON right after powered OFF (within 5seconds), the inrush current exceeding the specified value (2ms or less) may be generated. Therefore, make sure to re-power ON the module 5seconds after power off.

When selecting a fuse or breaker for external circuit, consider the above point as well as meltdown and detection characteristics.

*5: Overcurrent protection

The overcurrent proctection device shuts off the 5VDC and/or 24VDC circuit(s) and stops the system if the current exceeding the specified value flows in the circuit(s).

As this results in voltage drop, the power supply module LED turns OFF or is dimly lit.

After that, eliminate the causes of overcurrent, e.g., insufficient current capacity and short circuit, and then start the system.

When the current has reached the normal value, the initial start up of the system will be performed.

*6: Overvoltage protection

The overvoltage protection shuts off the 5VDC circuit and stops the system if the overvoltage of 5.5 to 6.5V is applied to the circuit.

This results in the power supply module LED turning OFF.

When restarting the system, power OFF and ON the input power supply, and the initial start up of the system will be performed.

If the system is not booted and the LED remains off, this means that the power supply module has to be replaced.

*7: Allowable momentary power failure period

The PLC CPU allowable momentary power failure period varies with the power supply module used.

In case of the A1S63P power supply module, the allowable momentary power failure period is defined as the time from when the primary side of the stabilized power supply for supplying 24VDC to the A1S63P is turned OFF until when the voltage (secondary side) has dropped from 24VDC to the specified value (15.6VDC) or less.

REMARKS

For the power supply specifications of the extension module, refer to the A1FXCPU User's Manual (Setup).

2.2.2 Number of extension points and 24VDC service power supply capacity

The A1FXCPU and extension module supply 24VDC power to extension blocks. Therefore, the number of extension block points connected must be within the range in which the A1FXCPU and extension module can supply power. Since 0.13A out of servicing power supply 24VDC is used for the built-in functions,

the 24VDC external service power supply 24VDC is used for the built-in functions, the 24VDC external service power supply capacity is max.

0.3A (0.43A-0.13A=0.3A)

(1) Power supplying range

The A1FXCPU or extension module can supply 24VDC service power in the following range.

B: Extension block Special B: Special block

The A1FXCPU or extension module supplies 24VDC current to extension locks in the extension module connected next.

When the extension block is designed for input, the power supply for input equipment drive requires external wiring. Special blocks are supplied with 5VDC power.

(2) 24VDC capacity calculation

The capacity of the 24VDC service power supply depends on the model. <24VDC service power supply capacity>

Model	Power Supply Capacity	Remarks
A1FXCPU	300mA	
FX2N-32E	250mA	Power supplied to extension blocks
FX2N-48E	460mA	

Extension blocks designed for input and output differ in current consumption.

Current consumption less than the total capacity indicates that extension blocks can be connected.

Remaining power may be used for sensors, output loads, etc.

 ≥ 0 (remaining power for sensors and loads)

If the result is less than 0, the capacity is short.

Use an extension module midway.

Connection example: A1FXCPU, FXon-8EX, FX2N-16EX, FXon-8EYR

(3) Quick calculation table

The following tables represent capacity formulas with specific values.

They can be used to determine whether extension blocks may be connected or not and to find the remaining 24VDC service power.

A1FXCPU

When the $\mathsf{FX}_{0N}\text{-}\mathsf{3A}$ is not used

When the FX0N-3A is used (up to 2 FX0N-3A's may be connected)

When FX_{2N}-32E is used

When FX_{2N}-48E is used

		(mA)								
	48	10		Example: When 16 input points and 16 output points are added, 24VDC 35 service current is 210mA or less.						
	40	85	35							
	32	160	110	60	/10					
Number of output	24	235	185	135	85	35				
extension points	16	310	260	210	160	110	60	10		
	8	385	335	285	235	185	135	85	35	
	0	460	410	360	310	260	210	160	110	60
		0	8	16	24	32	40	48	56	64
				→ N	umber c	of input				
				e	xtension	points				

2.2.3 Number of special extension modules and blocks and 5VDC power supply capacity

When special modules and special blocks are used, the number of modules and blocks connected and 5VDC current consumption must be taken into consideration.

(1) Number of modules and blocks connected

Up to eight special modules/special blocks may be connected to the A1FXCPU.

(2) Power supply range

Special blocks are supplied with 5VDC in the following range.

B: Extension block Special B: Special block Special U: Special module

The A1FXCPU or extension module supplies 5VDC power to the special blocks in the extension module connected next. (The special module does not include a power supply.)

As 5VDC power is supplied through the extension cable, external wiring is not necessary.

(3) 5VDC capacity calculation

The 5VDC power supply of each module is as follows. Refer to the following table for the current consumption of each special block.

<5VDC power supply capacity>

Model	Power Supply Capacity	Remarks
A1FXCPU	300mA	The 5VDC current to the CPU and
FX _{2N} extension module		the equipment connected to the
	690mA	programming connector has already
		been subtracted.

5VDC Total capacity 300mA or 690mA	-	Special block 5VDC Current consumption Refer to Table 2.6.	≥ 0 If the result is less than 0, the capacity is short. Use an extension module midway.
--	---	---	---

Up to two FX0N-3A's may be connected to the A1FXCPU or FX2N-32E, or up to three FX0N-3A's to the FX2N-48E. If more blocks are connected, use the extension module (FX2N-32E, FX2N-48E) midway. Connection example: A1FXCPU, FX0N-3A ×2, FX-IHC ×1, FX-10GM ×1

300mA - (30 2)mA - 70mA - 0mA (power supply built-in: unnecessary)=170mA ≥ 0 (connectable)

Model	Туре	Name	Current Consumption (5VDC)
	FX0N-3A	2-channel analog input, 1-channel analog output	30mA
	FXon-16NT	For M-NET/MINI (twisted wire)	20mA
	FX2N-4AD	4-channel analog input	30mA
	FX2N-4DA	4-channel analog output	30mA
	FX2N-4AD-PT	4-channel temperature sensor input (PT-100)	30mA
	FX2N-4AD-TC	4-channel temperature sensor input (thermocouple)	30mA
	FX2N-1HC	50kHz 2-phase high-speed counter	90mA
	FX2N-1PG	100kpps pulse output block	55mA
	FX2N-232IF	RS-232C communication interface	40mA
Special	FX-16NP *	For M-NET/MINI (optical fiber)	80mA
Special	FX-16NT *	For M-NET/MINI (twisted wire)	80mA
DIOCK	FX-16NP-S3 *	For M-NET/MINI-S3 (optical fiber)	80mA
	FX-16NT-S3 *	For M-NET/MINI-S3 (twisted wire)	80mA
	FX-2DA *	2-channel analog output	30mA
	FX-4DA *	4-channel analog output	30mA
	FX-4AD *	4-channel analog input	30mA
	FX-2AD-PT *	2-channel temperature sensor input (PT-100)	30mA
	FX-4AD-TC *	4-channel temperature sensor input (thermocouple)	40mA
	FX-1HC *	50kHz 2-phase high-speed counter	70mA
	FX-1PG *	100kpps pulse output block	55mA
	FX-1DIF *	ID interface	130mA
Created	FX-1GM *	Positioning pulse output module (1 axis)	Self-supply
Special	FX-10GM *	Positioning pulse output module (1 axis)	Self-supply
module	FX-20GM *	Positioning pulse output module (2 axes)	Self-supply

Table 2.6 Special Block and Special Module Current Consumption List

* The FX_{2N}-CNV-IF conversion adaptor is required for use of special modules and special blocks.

2. PERFORMANCE

2.3 Performance of Simple Inter-PLC Link

This section provides the simple inter-PLC link performance of the A1FXCPU.

2.3.1 Simple inter-PLC link performance list

Table 2.7 gives the simple inter-PLC link performance list of the A1FXCPU.

ltem		Performance		
Interface		Conformance with RS-485		
Communication method		Half duplex communication system		
Synchronous method		Asynchronous system		
Transmission speed		38400bps		
Total transmission distance		Max. 500m		
Number of stations		8 stations		
Data	Bit data	0, 32 or 64 bits/station		
	Word data	4 or 8 words/station		
Data communication method		N : N		
Link scan time		Max. 200ms		

Table 2.7 Performance List
2.3.2 Interface specifications

Table 2.8 gives the RS-485 interface specification list of the A1FXCPU.

Table 2.8 Specification List

POINT

Connect both ends of the shield wire of the twisted pair cable to the ground (ground conductor with class D (class-3)) via "SLD" and "FG" of each module. SLD and FG are connected inside the module.

2.3.3 Specifications of the twisted pair cable

Table 2.9 indicates the specifications of the cable that may be used in simple inter-PLC link of the A1FXCPU.

Table 2.9 Twisted Pair Cable Specifications

ltem	Specifications
Cable type	Shielded twisted pair cable
Number of pairs	2 pairs or more
Conductor resistance (20°C)	88.0Ω/km or less
Capacitance (1kHz)	Average 60nF/km or less
Characteristic impedance (100kHz)	110±10Ω

REMARKS

The manufacturers and types of the recommended shielded twisted pair cables are as follows.

Manufacturer	Туре	Remarks
Mitauhiahi Cahla Induatriaa	SPEV (SB) - 0.2 - 2P	0.2mm ² 2-pair cable
Millsubishi Cable Industries	SPEV (SB) - 0.5 - 2P	0.5mm ² 2-pair cable
Chaura Electric Mire & Cable	KMPEV-SB CWS-178 0.2SQ×2P	0.2mm ² 2-pair cable
Showa Electric Wire & Cable	KMPEV-SB CWS-178 0.5SQ×2P	0.5mm ² 2-pair cable
Sumitomo Electrio Industrios	DPEV SB 0.3×3P	0.3mm ² 2-pair cable
	DPEV SB 0.5×3P	0.5mm ² 2-pair cable
Fumulaeuro Flantain	D-KPEV-SB 0.2×3P	0.2mm ² 2-pair cable
Furukawa Electric	D-KPEV-SB 0.5×3P	0.5mm ² 2-pair cable
Fuiilure	IPEV-SB 0.3mm ² ×2P	0.3mm ² 2-pair cable
гијкита	IPEV-SB 0.5mm ² ×2P	0.5mm ² 2-pair cable

2.4 Performance of Simple Positioning

This section provides the simple positioning performance of the A1FXCPU.

2.4.1 Simple positioning performance list

Table 2.10 gives the simple positioning performance list of the A1FXCPU.

lte	em	Performance							
Number of axes of	controlled	2 axes							
Number of	Capacity	1							
positioning data	Setting method	By sequence program							
Control unit		pulse							
Positioning syste	m	Position control							
Acceleration/deceleration		Automatic trapezoidal acceleration/deceleration							
Acceleration/dec	eleration time	1 to 32767 (ms)							
Output pulse rang	ge	0 to 16777215 (pulse)							
Output pulse spe	ed	1 to 60000 pps							
Starting bias spe	ed	1 to 60000 pps							
Error indication*1		Special relay							
Positioning data s	torage destination	Special register							

Table 2.10 Performance List

*1: For details, refer to Section 5.3.4.

2.4.2 Interface specifications

Table 2.11 gives the simple positioning interface specification list of the A1FXCPU.

Item	Specifications								
Number of output points	4 points (positioning pulse output 2 axes×2 points, Y10 to 13)								
Output form		Trans	istor (open	collector)	output			
Rated load voltage			5	-15/2	4VDC				
Operating load voltage range	4.75 to 16.5	VDC (a	t 5-15	SVDC)/21.6 to 2	6.4VDC (at	24VDC)		
Max. load current/inrush current	50n	nA/poin	t, 200	mA 1	0ms or les	s (at 25°C))		
Min. load current	2mA (when it is	less that	an 2m	A, a	dummy res	sistor shoul	d be addeo	1.)	
Max. voltage drop at ON			0.5	5VDC	or less				
Leakage current at OFF			0.	1mA	or less				
Common method			2 ро	ints-1	common				
	(Y10 COM and Y12 CO	OM, and	1 Y11	CON	l and Y13 (COM are co	onnected ir	nternally)	
Exte	ernal wiring				Xa	axis	Ya	ixis	
					Terminal	Signal	Terminal	Signal	
					Number	Name	Number	Name	
		B16	••	A16 A15 A14	B16	YDC5	A16	XDC5	
A1FXCPU	MR-J	B15			B15	TDC24	A15	XDC24	
×X/YDC5 A12/I	$\frac{1}{1}$	B14	••		B14	Y13	A14	Y12	
		B13	••	A13	B13	Y13 COM	A13	Y12 COM	
	SG	B11	••	A11	B12	Y11	A12	Y10	
		B10	00	A10	B11	Y11 COM	A11	Y10 COM	
∑X/YDC5		B9	00	A9	B10		A10		
	B14	B7	00	A0 A7	B9		A9		
	SD SD	B6	00	A6	B8		A8		
A13/	B13	B5	00	A5	B7		A7		
A15/	B15 VDD	B4 B3		A4 A3	B6		A6		
	'B16	B2	00	A2	B5		A5		
		B1	00	A1	B4		A4		
					B3		A3		
					B2		A2		
					B1	—	A1	—	

Table 2.11 Specification List

— : Indicates the terminal which is not used with this function.

POINT	
For use of the	e X axisConnect the power supply to XDC5 at 5-15VDC or to XDC24 at 24VDC.
For use of the	e Y axisConnect the power supply to YDC5 at 5-15VDC or to YDC24 at 24VDC.

2.4.3 Output specifications

(1) Pulse output

The following table lists the relationships between pulse output switching and pulse outputs by pulse output logic switching setting. (Refer to Section 5.3.4):

Output Terminals		Pulse Output	Positiv	e Logic	Negative Logic			
X axis	Y axis	Method	Forward rotation	Reverse rotation	Forward rotation	Reverse rotation		
Y10	Y11	CW		1				
Y12	Y13	CCW	High Low		High Low			
Y10	Y11	PULSE		unn				
Y12	Y13	SIGN	High Low		High Low			

(2) Pulse rise/fall time

The following table lists the pulse rise and fall times at the ordinary ambient temperature.

Table 2.12 Pulse Rise/Fall Time at Normal Temperatures

Load voltage (V)		26.4				4.75							
Cable length (m)		1			2			1					
Load current (mA)	Pulse speed (kpps)	tf	tr	Duty	tf	tr	Duty	tf	tr	Duty	tf	tr	Duty
2	60	0.1	3.4	41	0.1	5.0	39	0.1	0.8	48	0.1	1.1	49
2	10	0.1	4.0	48	0.1	5.7	48	0.1	0.9	50	0.1	1.2	50
10	60	0.1	0.7	48	0.1	1.1	46	0.1	0.3	50	0.1	0.4	50
10	10	0.1	0.9	50	0.1	1.3	50	0.1	0.3	50	0.1	0.4	50
50	60	0.1	0.3	48	0.1	0.4	49	0.2	0.3	50	0.2	0.3	50
50	10	0.1	0.4	50	0.1	0.4	50	0.2	0.3	50	0.2	0.3	50

(Units = tf, tr : μ s, Duty : %)

REMARKS

1) In Table 2.12, tr indicates a pulse rise time and tf its fall time.

2.5 Performance of the High-Speed Counter

This section provides the high-speed counter performance of the A1FXCPU.

2.5.1 High-speed counter performance list

Table 2.13 gives the high-speed counter performance list of the A1FXCPU.

	Item Specifications								
Counting speed selection setting 1 p			1 phase/2 phase: 60kpps/1 phase: 10kpps, 2 phase: 7kpps						
Number of channels			2 channels						
	Phase		1-phase input, 2-phase input						
Count input	Countinputo	ianal	CH.1						
	Count input s	ignai	CH.2						
			1-phase input multiplied by 1, 1-phase input multiplied by 2						
Pulse input n	node		2-phase input multiplied by 1, 2-phase input multiplied by 2, 2-phase input						
	I	I	multiplied by 4						
		1-phase	60kpps						
	Counting	input							
	speed (max.)	2-phase	60kpps						
		input							
	Counting range		0 to 16777215						
Counter	Туре		UP/DOWN preset counter + ring counter function						
	Min. count pulse width (duty ratio 50%)		$17\mu s$ $17\mu s$ $8.5\mu s$ $8.5\mu s$ $(1-, 2-phase input)$						
	Comparison I	ange	0 to 16777215						
Comparison output	Comparison ı	esult	Set value <count (m9147="" m9167)<br="" value="">Set value=count value (M9148/M9168) Set value>count value (M9149/M9169)</count>						
			CH.1: X8						
External	Preset		CH.2: X9						
input		1	CH.1: X6						
	Disable/latch	trigger	CH.2: X7						
Interrupt	Coincidonas		CH.1: I12						
output	Concluence	σαιραί	CH.2: I13						

Table 2.13 Performance List

Countalbe Counting Speed

Counting Speed Selection Setting	60	0k	10	Ĵk
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
t=2.5µs or less	60kpps	60kpps	10kpps	7kpps
t=25µs or less	10kpps	10kpps	1kpps	700pps
t=500µs or less			500pps	250pps

2.5.2 Interface specifications

Table 2.13 gives the high-speed counter function interface specification list of the A1FXCPU.

Itom		Specifications								
· ·	lem	External input				Counter input				
Number of input points 4 points (Xe			to 9)			4 points (XA to D)				
Built in function		Preset 2 channe	ls×1 p	oint		Count	or input 2 o	bonnolov2	nointa	
Built-In Tunction		Disable/latch trigger 2 c	hanne	ls×1 p	oint	Counte		:nanneis×z	points	
Isolation metho	d			Photo	coup	ler isolatior	1			
Rated input vol	tage	24VDC					24\	/DC		
Rated input cur	rent	5mA					8n	nA		
Operating volta	ge range	21	.6 to 2	6.4VE	DC (ri	ople ratio w	vithin 5%)			
Max. number	of simultaneous		1	00%	simul	taneous Ol	N			
input points			1	00 /0	Simul		N			
ON voltage/ON	current	18V/3.5mA or	more				19V/5.5m	A or more		
OFF voltage/OI	FF current	3V/0.7mA or	less				3V/0.25m	nA or less		
Input resistance	e	4.7kΩ					2.7	'kΩ		
Response time	OFF→ON	0.5ms or le	ess				60kpps	or less		
	ON→OFF	0.5ms or le	ess				60kpps	or less		
Common methe	bd	10 points-1 common (Common to X	All points with independent commons							
	Ext	ernal wiring	CH1 CH2							
						Terminal	Signal	Terminal	Signal	
External switch	inte		1			Number	Name	Number	Name	
	R •					A16	_	B16		
. 45	R	Internal				A15		B15		
	¥		B16	00	A16	A14		B14		
		Photocoupler	B15	00	A15	A13		B13	—	
B4			B14	00	A14	A12		B12		
			B12	00	A12	A11		B11		
- + ^{B5}			B11	00	A11	A10	YC	B10	ΧD	
B6	-		B10		A10	A9	70	B9	ΛD	
it j;			B8	••	A8	A8	XΔ	B8	XB	
24VDC Encoder			B7	••	A7	A7	701	B7		
	R+		B6 B5		A6	A6	COM1	B6	COM1	
24VDC	R		B4	••	A4	A5	X8	B5	X9	
			В3	00	A3	A4	X6	B4	X7	
I A8/B8 Photocoupler Encoder			B2	00	A2	A3		B3	—	
					ייין	A2	—	B2		
24VDC 		Photocoupler				A1	_	B1	—	

Table 2.13 Specification List

— : Indicates the terminal which is not used with this function.

2.6 Performance of the External Interrupt Function

This section provides the external interrupt function performance of the A1FXCPU.

2.6.1 External interrupt function performance list

Table 2.15 gives the external interrupt function performance list of the A1FXCPU.

ltem	Performance
Number of interrupt points	6 points
	• X0 to X5: External inputs (you can select interrupt
Interrupt factor	execution on leading/trailing edge for each point.)
	I0: X0, I1: X1, I2: X2, I3: X3, I4: X4, I5: X5

Table 2.15 Performance List

2.6.2 Interface specifications

Table 2.16 gives the interrupt function interface specification list of the A1FXCPU.

lte	em	Specifications								
Number of input points				6 points (X0 to 5)						
Isolation method				Photo	coup	ler isolatior	ı			
Rated input volta	ige				24\	/DC				
Rated input curre	ent				5r	nA				
Operating voltag	e range	21.	6 to 2	6.4VD)C (rij	ople ratio w	vithin 5%)			
Max. number of s input points	simultaneous	100% simultaneous ON								
ON voltage/ON o	current			18V/	3.5m	A or more				
OFF voltage/OFI	F current			3V/	0.7m	A or less				
Input resistance					4.7	'kΩ				
Pooponao timo	OFF→ON			0	.5ms	or less				
Response line	ON→OFF			0	.5ms	or less				
Common methor	4		10 poi	nts-1	comr	non (2 tern	ninals)			
		(Common to X0 to 9)								
		External	External wiring							
						Terminal	Signal	Terminal	Signal	
	Inte	rnal circuit				Number	Name	Number	Name	
A1			B16	00	A16	B16		A16		
			B15	00	A15	B15		A15		
	R (¥		B14	00	A14	B14		A14		
A3			B13		A13	B13		A13		
	Ph	otocoupler	B12	00	A12	B12		A12		
A6 🖓			B10	00	A10	B11		A11		
B1			B9	00	A9	B10		A10		
			B8	00	A8	B9		A9		
			В7 В6	••	A7 A6	B8		A8		
В3			B5	00	A5	B7		A7		
	B4	00	A4	B6	COM1	A6	COM1			
	B3 B2		A3 A2	B5	_	A5				
+,-			B1	••	A1	B4		A4		
24VDC			1		,	B3	X5	A3	X4	
21120			1			B2	X3	A2	X2	
						B1	X1	A1	X0	

Table 2.16 Specification List

---: Indicates the terminal which is not used with this function.

2.7 Terminal Arrangement of the Built-in Function Connector

Table 2.17 gives the Built-in function connector terminal arrangement list of the A1FXCPU.

Built-in Function Connector Terminal Arrangement (Front View)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Terminal Number	Signal Name	Application	Terminal Number	Signal Name	Application	
A1	X0	Interrupt input 10	B1	X1	Interrupt input I1	
A2	X2	Interrupt input I2	B2	X3	Interrupt input 13	
A3	X4	Interrupt input 14	B3	X5	Interrupt input 15	
A4	X6	CH1 count disable/latch counter trigger input	B4	X7	CH2 count disable/latch counter trigger input	
A5	X8	CH1 counter preset input	B5	X9	CH2 counter preset input	
A6	COM1	Common for input X0 to 9	B6	COM1	Common for input X0 to 9	
A7	VA	CH1 A-phase pulse input	B7	VD	CH2 A-phase pulse input	
A8	A	(high-speed counter)	B8	лD	(high-speed counter)	
A9	XC	CH1 B-phase pulse input	B9	VD	CH2 B-phase pulse input	
A10	XC	(high-speed counter)	B10	XD	(high-speed counter)	
A11	Y10 COM	X axis CW/PULSE common (connected to Y12 common internally)	B11	Y11 COM	Y axis CW/PULSE 0V (connected to Y13 common internally)	
A12	Y10	X axis CW/PULSE output	B12	Y11	Y axis CW/PULSE output	
A13	Y12 COM	X axis CCW/SIGN common (connected to Y10 common internally)	B13	Y13 COM	Y axis CCW/SIGN common (connected to Y11 common internally)	
A14	Y12	X axis CCW/SIGN output	B14	Y13	Y axis CCW/SIGN output	
A15	XDC24	External supply for Y10, 12 (X axis) (at 24VDC), 24VDC input	B15	YDC24	External supply for Y11, 13 (Y axis) (at 24VDC), 24VDC input	
A16	XDC5	External supply for Y10, 12 (X axis) (at 5-15VDC), 5-15VDC input	B16	YDC5	External supply for Y11, 13 (Y axis) (at 5-15VDC), 5-15VDC input	

Table 2.17	' Terminal	Arrangement L	.ist
-------------------	------------	---------------	------

POINT

The applicable wire size is 0.3mm².

2.8 Performance Specifications of the Terminal Block

Table 2.18 provides the terminal block performance specification list of the A1FXCPU.

	Terminal Block Front View				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		1 3 5 7 9 11			
Terminal	Signal	Application			
Number	Name	Application			
1	L	AC power input			
2	LG	Line ground. Always ground the terminal to the protective ground conductor.			
3	N	AC power input			
4	NC	Must not be used			
5	NC				
6	SDA/RDA				
7	SDB/RDB	Simple PLC link			
8	SG				
9	+24V	24VDC output for external service power supply.			
10	SLD	Simple PLC link			
11	24G	24VDC ground for external service power supply.			
12	FG	Grounding terminal. Always ground the terminal to the protective ground conductor.			

Table 2.18 Performance List

POINT

(1) Tighten the terminal screws within the following tightening torque.

Terminal block screw (M3 screw) 39 to 59N·cm

(2) The applicable wire sizes are 0.3 to 2mm².

3. SYSTEM CONFIGURATION

This chapter provides the system configuration usable with the A1FXCPU, system configuration instructions and system equipment.

3.1 Overall Configuration

3. SYSTEM CONFIGURATION

MELSEC-A

3.2 System Configuration Instructions

Observe the following instructions when using the hardware and software packages available for the A1FXCPU.

3.2.1 Hardware

(1) I/O modules

The I/O modules that may be used with the A1FXCPU are the FX series extension modules/extension blocks.

Refer to Section 3.3. for the types of the usable FX series extension modules/ extension blocks.

(2) Special modules

The special modules that may be used with the A1FXCPU are the FX series special modules/special blocks.

Refer to Section 3.3. for the types of the usable FX series special modules/special blocks.

(3) Peripherals

(a) Any of the following programming modules may be used with the A1FXCPU in the hand-held method. (The following peripherals cannot be used with the A1FXCPU in the add-on method.)

Programming Module	CPU Type Indication
A7PU	
A7PUS	
A8PU	40
A8UPU	AZ
A8PUJ	
A6DU-B*	

* The A6DU-B is a data access module.

(b) EP-ROM cannot be used with the A1FXCPU.

 E^{2} PROM built in the A1FXCPU is used to perform ROM operation. Use the DIP switch of the A1FXCPU to switch between RAM operation and E^{2} PROM operation. (Refer to Section 4.2.)

- (4) Program write in E²PROM operation mode
 - (a) In the E²PROM operation mode, write during RUN cannot be performed. If write during RUN is performed, the following error message appears on the peripheral.

Peripheral	Message
A6GPP	PC COMMUNICATION ERROR
A6PHP	ERROR CODE=17
A7PHP	
A7HGP	
A7LMS	CANNOT COMMUNICATE WITH PC
A75LMS	ERROR CODE=17
PC9801	
DOS/V personal computer	
A7PU	
A7PUS	
A8PU	PC NOT RESPOND
A8UPU	
A8PUJ	

Change the program in the "PC mode" or "online mode" of the peripheral.

(5) Restrictions on use of peripherals

"Buffer memory batch monitoring" of the special module/special block cannot be performed from the peripheral connected to the A1FXCPU.

If buffer memory monitoring is made, the following error message appears on the peripheral.

Peripheral	Error Message	
A6GPP		
A6PHP	I/O ADDRESS SETTING ERROR	
A7PHP		
A7HGP		
A7LMS	WRONG I/O ADDRESS SETTING	
A75LMS		
PC9801		
DOS/V personal computer		

On the A1FXCPU, use the FROM/TO instructions to read/write data from/to the special module/special block. (Refer to Chapter 7.)

- (6) Restrictions on use of GOT
 - (a) The GOT may only be connected directly to the A1FXCPU by the RS-422 cable. It cannot be connected by a bus or computer link.
 - (b) "Buffer memory batch monitoring" of the special module/special block cannot be performed from the GOT connected to the A1FXCPU.
 If buffer memory monitoring is made, error message "SPECIFIED DEVICE OUTSIDE RANGE" appears on the GOT.
 - (c) Special module monitoring cannot be performed from the GOT connected to the A1FXCPU.

If special module monitoring is made, "ALL SLOTS EMPTY" appears.

3.2.2 Software packages

(1) System software package and startup type setting

Any of the A series peripherals and system software packages indicated in Table 3.1 can be used with the A1FXCPU.

When starting up the system with the system software package, set "A2" as the CPU type.

The FX series software packages cannot be used with the A1FXCPU.

Peripheral	System Software Package	Startup Type Setting
	SW3-GPPA	
A0GPP	SW□GP-GPPA	
A6PHP	SW□GP-GPPA	
	SW0RX-GPPA	
A7PHP	SW0SRX-GPPA	
	SW [_] SRXV-GPPA	
A7HGP	SW□HX-GPPA	4.2
	SW S-GPPA	A2
A7LMS	SW0SRX-GPPA	-
	SW□SRXV-GPPA	
A75LMS	SW [_] SRXV-GPPA	
DC0900	SW0N-GPPA	
PC9800	SW⊟NX-GPPA	
DOS/V personal computer	SW□IVD-GPPA	

Table 3.1 A Series Peripherals and System Software Packages

(2) Utility packages

Table 3.2 indicates the utility packages usable with the A1FXCPU.

Table 3.2 Utility Packages Us	able with A1FXCPU
-------------------------------	-------------------

Utility Package Type	Usability	Remarks	
SW0GHP-UTLPC-FN1			
SW0GHP-UTLPC-PID			
SW0GHP-UTLPC-FD1	Llaabla	Select "A2" for startup type	
SW0GHP-UTLPC-FN0	USable	setting.	
SW0C-UTLP-FN0			
SW2SRXV-SAPA (MELSAPII)			
SW1GP-AD57P	Unuachla		
SW1GP-SAPA (MELSAP)	Unusable		

3.3 System Equipment List

Table 3.3 indicates the FX_{2N} and FX_{0N} series extension modules, extension blocks, special modules and special blocks that may be connected with the A1FXCPU.

Model		Туре	Description	Occupied Points
	Extension module	FX2N-32ER	24VDC input: 16 points, relay output: 16 points, power supply (100 to 240VAC) built in	32 points
		FX2N-32ES	24VDC input: 16 points, triac output: 16 points, power supply (100 to 240VAC) built in	32 points
		FX2N-32ET	24VDC input: 16 points, transistor output: 16 points, power supply (100 to 240VAC) built in	32 points
		FX2N-48ER	24VDC input: 24 points, relay output: 24 points, power supply (100 to 240VAC) built in	64 points
		FX2N-48ES	24VDC input: 24 points, triac output: 24 points, power supply (100 to 240VAC) built in	64 points
		FX2N-48ET	24VDC input: 24 points, transistor output: 24 points, power supply (100 to 240VAC) built in	64 points
FX2N series		FX2N-16EX	24VDC input: 16 points	16 points
	Extension block	FX2N-16EYT	Transistor output: 16 points	16 points
	Extension block	FX2N-16EYR	Relay output: 16 points	16 points
		FX2N-16EYS	Triac output: 16 points	16 points
		FX2N-4AD	4-channel analog input	8 points
		FX2N-4DA	4-channel analog output	8 points
		FX2N-4AD-PT	4-channel temperature sensor input (PT-100)	8 points
	Special block	FX2N-4AD-TC	4-channel temperature sensor input (thermocouple)	8 points
		FX2N-1PG	100kpps pulse output	8 points
		FX2N-1HG	50kHz 2-phase high-speed counter	8 points
		FX2N-232IF	RS-232C computer link interface, communication enabled in no-protocol mode	8 points
		FX0N-16EX	24VDC input: 16 points	16 points
		FX0N-8ER	24VDC input: 4 points, 2A relay output: 4 points	32 points
	Extension block	FX0N-8EYR	2A relay output: 8 points	16 points
	Extension block	FX0N-8YT	0.5A transistor output: 8 points	16 points
EXau aprica		FX0N-16EYR	2A relay output: 16 points	16 points
FAUN SELIES		FX0N-16YET	0.5A transistor output: 16 points	16 points
	On a sight black	FX0N-3A	Analog I/O, 8-point bits, input 2 channels, output 1 channel	8 points
	Special block	FX0N-16NT	MELSECNET/MINI interface (twisted pair cable)	32 points
	Extra extension cable FX0N-65EC		Extension cable 65cm for connection between A1FXCPU and FX $_{0N}/FX_{2N}$ series extension module	
		FX-4AD	4-channel analog input	8 points
		FX-2DA	2-channel analog output	8 points
		FX-2AD-PT	2-channel temperature sensor input (PT-100)	8 points
FX series		FX-4AD-TC	4-channel temperature sensor input (thermocouple)	8 points
		FX-1PG	100kpps positioning pulse output	8 points
	Special block	FX-1HG	50kHz 2-phase high-speed counter	8 points
		FX-16NP	MELSECNET/MINI interface (optical cable)	32 points
		FX-16NT	MELSECNET/MINI interface (twisted pair cable)	32 points
		FX-16NP-S3	MELSECNET/MINI-S3 interface (optical cable)	40 points
		FX-16NT-S3	MELSECNET/MINI-S3 interface (twisted pair cable)	40 points
		FX-IDIF	ID interface	40 points

Table 3.3 System Equipment List

	Model	Туре	Description	Occupied Points
		FX-1GM	Positioning pulse output (1 axis), max. frequency 100kpps	8 points
	Special module	FX-10GM	Positioning pulse output (1 axis), max. frequency 200kpps	8 points
		FX-20GM	Positioning pulse output (2 axes), max. frequency 200kpps	8 points
T X Series	Power supply module	FX-10PSU	24VDC 1A power supply (for external service power supply)	
	Power supply module	FX-20PSU	24VDC 2A power supply (for external service power supply)	
	Conversion cable	FX2N-CNV-IF	For connection of FX series special extension block to A1FXCPU	
		FX-25DU	Data access module (direct PLC connection type)	
		FX-30DU-B	Blue liquid crystal screen data access module	
		FX-40DU	Black-and-white liquid crystal screen data access module	
		FX-40DU-B	Blue liquid crystal screen data access module	
		FX-40DU-TK	Black-and-white liquid crystal screen data access module (Touch key type)	
Data access m	odule	FX-40DU-TKB	Blue liquid crystal screen data access module (Touch key type)	
		FX-50DU-TK	Black-and-white liquid crystal screen data access module (Touch key type)	
		FX-50DU-TKS	Color liquid crystal screen data access module (Touch key type)	
		FX-40DU-CAB	Cable for connection of data access module and A1FXCPU 3m	
		A985GOT	Large-sized graphic operation terminal [800×600 dots], TFT color liquid crystal, 256 colors	
		A975GOT	Large-sized graphic operation terminal [640×480 dots], TFT color liquid crystal, 256 colors/ [640×480 dots], TFT color wide angle view, 256 colors	
		A970GOT	Large-sized graphic operation terminal [640×480 dots], TFT color liquid crystal, 16 colors/ [640×480 dots], TFT color wide angle view, 16 colors/ [640×480 dots], STN color, 8 colors/ [640×480 dots], STN monochrome, 2 colors	32[32 special points]
		A960GOT	Large-sized graphic operation terminal [640×400 dots], EL, 2 colors	
Graphic operation terminal		A956GOT	Mid-sized graphic operation terminal [320×240 dots], STN color, 8 colors/ [320×240 dots], STN monochrome/ [320×240 dots], TFT color liquid crystal, 256 colors	
		A956WGOT	Mid-sized graphic operation terminal [320×240 dots], TFT color liquid crystal, 256 colors	
		A953GOT	Mid-sized graphic operation terminal [320×240 dots], STN color, 8 colors/ [320×240 dots], STN monochrome/ [320×240 dots], TFT color liquid crystal, 256 colors With handheld-type	
		A951GOT	Mid-sized graphic operation terminal [320×240 dots], STN color, 8 colors/ [320×240 dots], STN monochrome/ [320×240 dots], TFT color liquid crystal, 256 colors	32[32 special points]

Table 3.3 System Equipment List (Continued)

Model	Туре	Description	Occupied Points
	A950GOT	[320×240 dots], STN color, 8 colors/ [320×240 dots], STN monochrome/ [320×240 dots], TFT color liquid crystal, 256 colors With handheld-type	
Graphic operation terminal	GT1565-VTBA	Large-sized graphic operation terminal 8.4" [640×480 dots], TFT color, 256 colors/65536 colors, (When installing a multi-color display board, 65536 colors can be displayed.)	00100
	GT1575-VTBA	Large-sized graphic operation terminal 10.4" [640 × 480 dots], TFT color, 256 colors/65536 colors, (When installing a multi-color display board, 65536 colors can be displayed.)	points]
Modem interface module	A6TEL	Interface for connection of A1FXCPU and modem May be connected to A1FXCPU in hand-held method.	
Battery	A6BAT	RAM memory backup (mounted on A1FXCPU)	

Table 3.3 Sy	ystem Equipme	ent List (Continued)
--------------	---------------	----------------------

4. NAMES OF PARTS AND THEIR SETTINGS

4.1 Names of Parts

Left side view and the front view without cover

No.	Name	Application			
1	Mounting hole (For M4 screw)	Pear-shaped hole used to mount this module to a panel such as a control box.			
2	"POWER" LED	5VDC power indicator LED			
3	"RUN" LED	 On : Indicates that the RUN/STOP switch is in the "RUN" position and sequence program operation is being executed. (Remains on if an error defined to continue sequence program operation occurs.) Off : Turns off when : 100 to 240VAC is not supplied to the A1FXCPU. The RUN/STOP switch is in the "STOP" position. Remote STOP is performed. Remote PAUSE is performed. Flicker : Flickers when: The self-diagnostic function detected an error defined to stop sequence program operation. Latch clear operation is performed. 			

4. NAMES OF PARTS AND THEIR SETTINGS

No.	Name	Application			
		• On : Indicates that the self-diagnostic function detected an error.			
		(Remains off when the error detected is the one preset to be turned off in			
		the LED indication priority setting.)			
4	"ERROR" LED	• Off : Indicates a normal status or that a failure was detected with the CHK			
		instruction.			
		• Flicker : Indicates that the annunciator (F) was switched on in the sequence			
		program.			
5		• On : Indicates normal operation of simple inter-PLC link.			
Э	LINK RON LED	Off : Indicates a simple inter-PLC link fault.			
		• Flicker : Indicates that data is being sent to the other station in simple inter-PLC			
6		link.			
0		• Off : Indicates that data is not yet sent to the other station in simple inter-PLC			
		link.			
		• Flicker : Indicates that data is being received from the other station in simple			
7		inter-PLC link.			
'		• Off : Indicates that data is not yet received from the other station in simple			
		inter-PLC link.			
8	RESET switch	• RESET: Hardware reset. Used to make a reset at occurrence of an operation fault			
Ŭ		and initialize operation.			
		 RUN/STOP: Used to execute/stop sequence program operation. 			
9	RUN/STOP switch	• LATCH CLEAR (L. CLR) : Used to clear (OFF or 0) latch clear data set in parameters.			
Ũ		(LATCH CLEAR also clears data other than the latch			
		clear data.)			
10	Built-in function connector cover	Cover for protection of the built-in function connector.			
		When the connector is not used, put this cover on.			
11	Indicator LED	I/O indicator LED			
12	Terminal block cover	Cover for protection of the terminal block. Put this cover on except when making			
		connections.			
13	Peripheral connector cover	Connector cover for connection of a peripheral.			
		When a peripheral is not used, put this cover on.			
		Cover for protection of the battery, connector, etc. of the A1FXCPU.			
		Open the protective cover to perform the following operations.			
		DIP switch setting			
14	Protective cover	Connection to the battery connector			
		Battery replacement			
		Connection/disconnection to/from the extension block connector			
15	Duilt in function connector	When the above operations are not performed, put this cover on.			
15	Butten:	Connector for the high-speed counter, positioning output and external interrupt input.			
10	Batten connector	Used to back up program, later range device, me register and other data.			
1/		For connection of the battery side connector.			
10		Lend to not moment protect and calest between DAM and Simple Inter-PLC IINK.			
19		Connector used to perform mein and select between RAM and E PRUM.			
20	Peripheral connector (D sub-25 pins)	connector used to perform main program write/read, monitoring and test using a			
04	DIN roll ootob	periprieral.			
21		Calch for mounting this module to a Din rall.			
22	Cover	Do not open this cover.			
23	Extension block connector	Connector for connection of the FXoN and FXoN series extension modules, extension			
		DIOCKS, SPECIAI MODULES AND SPECIAL DIOCKS.			

4.2 Settings

The A1FXCPU settings include RAM/E²PROM operation and write protect settings.

4.2.1 RAM/E²PROM operation setting

The memory operation system includes RAM and E^2 PROM modes. Use the DIP switch (SW1) to select the memory operation system. SW1 is factory-set in the RAM operation (lower) position.

POINT

Before choosing the E²PROM mode, read the contents of RAM with a peripheral.

4.2.2 Write protect switch setting

The write protect switch is used to prevent RAM and E^2PROM data from being rewritten by operation performed from a peripheral.

Use this switch to prevent a program created from being rewritten or deleted, for example.

When this function is used, RAM is write-protected in the RAM operation mode and E^2 PROM write-protected in the E^2 PROM operation mode.

Before making corrections to the RAM memory contents, clear write protect (move the switch to the upper position).

Use the DIP switch (SW2) to select or clear write protect.

SW2 is factory-set in the write protect clear (upper) position.

4.3 Latch Clear Operation

When performing latch clear using the RUN/STOP switch, perform operation in the following procedure. This operation also clears non-latched devices.

- Move the RUN/STOP switch from the "STOP" position to the "L CLR" position several times to flicker the "RUN" LED.
 When the "RUN" LED flickers, latch clear is ready.
- (2) After the "RUN" LED has flickered, move the RUN/STOP switch from the "STOP" position to the L CLR" position again. Latch clear is then completed and the "RUN" LED goes off.

To cancel the latch clear operation at any point, move the RUN/STOP switch to the "RUN" position to place the A1FXCPU in the RUN mode.

REMARKS

Latch clear may also be done by GPP function operation. For the operation method, refer to the GPP Function Operating Manual.

5. FUNCTIONS

This chapter describes the functions of the A1FXCPU.

5.1 Function List

The functions common to the MELSEC-A series and available for the A1FXCPU are listed in Table 5.1 and the built-in functions added to the A1FXCPU are indicated in Table 5.2. (For full information on the functions common to the MELSEC-A series, refer to the ACPU Programming Manual (Basics).)

Function	Description		
Constant scan	• This function executes the sequence program at specified intervals independently of		
	the sequence program scan time.		
	Constant scan setting: 1 to 200 (10 to 2000ms)		
Latch (power failure	• This function retains device contents when the A1FXCPU is switched off or is reset		
compensation)	by the RESET switch or if an instantaneous power failure of longer than 10ms occurs.		
	Devices that can be latched: L, B, T, C, D, W (default: L only)		
Remote RUN/STOP	• This function controls RUN/STOP of the CPU from an external device (e.g.		
	peripheral, external input) when the RUN/STOP switch is in the RUN position.		
PAUSE	This function stops operation while holding the outputs (Y).		
	• Either of the following methods may be used to put the CPU in the PAUSE mode.		
	 Remote PAUSE contact set in the parameter 		
	Remote PAUSE from the peripheral		
Status latch	• This function stores the contents of all devices into the status latch area of the		
	A1FXCPU when the status latch condition is satisfied (STRA instruction is executed).		
	• This function can be used to check the statuses of all devices of the A1FXCPU if an		
	error occurred in the sequence program.		
	• The contents of the devices stored in the status latch area can be monitored with the		
	peripheral.		
Sampling trace	• This function samples the operating statuses of the specified devices at specified		
	intervals and stores them into the sampling trace area.		
	• This function can be used to check the progress of statuses of the error-factor		
	devices at scans/specified time intervals if an error occurs in the sequence program.		
	Data stored in the sampling trace area can be monitored with the peripheral.		
Offline switch	• This function can separate devices (Y, M, L, F, B) used for OUT instructions from the		
	operation processing of the sequence program.		
	• This function can be used to switch on/off the OUT instruction devices when the		
	system is started up.		
ERROR LED priority	 Setting of whether the ERROR LED is lit or not at error occurrence. 		
setting			
Clock '	 This function executes clock operation in the A1FXCPU. 		
	 This function can be used for time control in the A1FXCPU. 		
	Clock data: Year, month, day, hour, minute, second, day of the week		
	Clock data can be read to special registers D9025-D9028.		

Table 5.1 Functions Common to the MELSEC-A Series

Function	Description	Refer To			
Simple inter-PLC	• With this function, data is automatically exchanged between up to eight	Section 5.2			
link	A1FXCPU, FX _{2N} and FX _{0N} series modules connected.				
	• Select the number of link points per station from the following patterns.				
	Pattern 0: Bit data: 0 points, word data: 4 points				
	Pattern 1: Bit data: 32 points, word data: 4 points				
	Pattern 2: Bit data: 64 points, word data: 8 points				
	Transmission distance: 500m overall				
Simple positioning	• With this function, positioning is performed by max. 60kpps pulse output	Section 5.3			
	with servo amplifier/stepping motor driver connected.				
	• Number of controlled axes: 2 axes (2 axes independent/simultaneous				
	start)				
	Pulse output : CW/CCW, PULSE/SIGN				
	Positioning range : 0 to 16777215 pulses				
High-speed counter	This function counts max. 60kpps pulse inputs from an encoder.	Section 5.4			
	Number of channels: 2 channels				
	Counting range: 0 to 16777215 pulses				
	• An interrupt program (I12, I13) can be run when the coincidence output set				
	value matches the present value of the counter.				
External interrupt	• This function executes a program (I0 to I5) corresponding to an interrupt	Section 5.5			
	factor when an external interrupt factor occurs.				

REMARKS

The following functions cannot be used in the A1FXCPU.

- Step run
- PAUSE by RUN/STOP switch
- I/O module change in online mode

5.2 Simple Inter-PLC Link

(1) Simple inter-PLC link

Simple inter-PLC link is a network which automatically makes data communication between up to eight A1FXCPU, FX_{2N} and FX_{0N} series modules connected.

On this network, the data of the devices set in the refresh range are transferred between the PLCs and those devices can be monitored by all PLCs.

(2) Classification of stations connected to simple inter-PLC link

The A1FXCPU, FX_{2N} and FX_{0N} series modules connected to simple inter-PLC link are classified into master and local stations.

(a) The master station is a controlling module for simple inter-PLC link.

One master station is always required in a simple inter-PLC link system.

Set the following link parameters to the master station in the sequence program (link setting program) (refer to Section 5.2.4).

- Corresponding station number (set 0)
- Number of local stations
- Refresh range (pattern 0 to 2)
- Number of retries
- Monitor time
- (b) Local stations are modules which make data communication using the link parameters of the master station.

Set only the corresponding station numbers (station numbers of host stations) to the local stations in the sequence program (link setting program). (Refer to Section 5.2.4.)

5.2.1 Instructions for simple inter-PLC link

In simple inter-PLC link, the FX_{2N} and FX_{0N} series can be connected. This section provides instructions for connection of the FX_{2N} and FX_{0N} series.

(1) Versions of FX_2N and FX_0N series $^{\ast 1}$

The FX_{0N}/FX_{2N} series connected to simple inter-PLC link should all be version V.2.00 or later (simple inter-PLC link compatible).

- (2) Connect communication adaptors to the FX2N and FX0N series
 - (a) The FX_{0N} series requires the communication adaptor (FX_{0N}-485ADP) to be connected.
 - (b) The FX_{2N} series requires the communication adaptor (FX_{0N}-485ADP) or communication board (FX_{2N}-485-BD) to be connected.
 - When the communication adaptor is used, overall distance is 500m.
 - When the communication board is used, overall distance is 50m.

Use the special adaptor when the FX_{2N} series is used and overall distance of longer than 51m is required.

(3) Serial number of communication adaptor (FX0N-485ADP) *2

The FX_{0N}-485ADP having the serial number 79^{****} or earlier cannot be used in simple inter-PLC link.

In simple inter-PLC link, use the FX0N-485ADP having the serial number $7X^{****}$ or later.

(4) Restrictions on connection of FX_{0N} series

When one or more FX_{0N} series are used, the refresh range may only be set to pattern 0.

When using pattern 1 or 2, use the A1FXCPU or FX_{2N} series modules at all stations.

REMARKS

- *1: The versions of the FX_{0N} and FX_{2N} are printed on the side face of the modules.
- *2: The serial number of the FX_{0N}-485ADP is printed on the side face of the module.

5.2.2 Procedure for simple inter-PLC link

The following is a simple inter-PLC link procedure.

5.2.3 Wiring for simple inter-PLC link

For simple inter-PLC link, connect the A1FXCPU, FX_{2N} and FX_{0N} series modules as shown below.

(1) Connection

Connect simple inter-PLC link stations as shown above. (When using the FX_{2N} and FX_{0N} series, refer to the user's manual of the communication adaptor/communication board used.)

(2) Connection cables

Connect simple inter-PLC link stations by shielded, twisted pair cables. (For the specifications of the shielded, twisted pair cables, refer to Section 2.3.3.)

(3) Connection of terminal resistors (*1)

"R"s connected to the stations at both ends of simple inter-PLC link are terminal resistors (110 Ω , 1/2W).

Use the terminal resistors supplied to the A1FXCPU, communication adaptor and communication board (see below).

- (4) Grounding
 - *2: The shielded, twisted pair cables used for connection in simple inter-PLC link must be connected to the SLD terminals.
 - *3: The FG terminal must be connected to the earth terminal of the PLC which has been earthed to the protective earth conductor.

REMARKS

- 1) The FX_{2N}-485-BD is the communication board designed for the FX_{2N} series.
- 2) The FX_{0N}-485ADF is the communication adaptor designed for the FX_{0N} series.

5.2.4 Data to be set for simple inter-PLC link

There are the following link parameter data for simple inter-PLC link.

- Corresponding station number
- Number of local stations
- Refresh range
- Number of retries
- Monitor time

Set the link parameters to the special registers in Table 5.3 in the sequence program.

Numbor	Nama	Description	Setting	Initial	Set S	tation
Number	Name	Description		Value	М	L
D9176	Corresponding station number	 Set the station number of the host station. 	0 to 7	FFFFH	0	0
D9177	Number of local stations	• Set the number of local stations to communicate with.	1 to 7	7	0	_
D9178	Refresh range	 Set the refresh range pattern. 	0 to 2	0	Δ	_
D9179	Number of retries	Set the number of retries up to error detection.	0 to 10	3	Δ	_
D9180	Monitor time	• Set the local station no-response time (monitor time) to the master station.	5 to 255	5	Δ	_

Table 5.3 Special Registers Used in Link Parameter Setting

- M : Master station, L: Local station
- O : Must be set.
- Δ : Set when initial value is changed (operative with initial value)
- -: Need not be set.
- (1) Corresponding station number setting
 - (a) Set the station number of the host station to the special register (D9176) with any of 0 to 7.

Station	Master	Local Station						
Number	Station	Station 1	Station 2	Station 3	Station 4	Station 5	Station 6	Station 7
Setting	0	1	2	3	4	5	6	7

(b) Station numbers must be set to the master and local stations.

Any station without this setting cannot make data communication in simple inter-PLC link.

- (2) Local station count setting
 - (a) Set the number of local stations connected to simple inter-PLC link to the special register (D9177).

Number of local stations	1 module	2 modules	3 modules	4 modules	5 modules	6 modules	7 modules
Setting	1	2	3	4	5	6	7

(b) The local station count setting is required for the master station only. It is not need for local stations.

- (3) Refresh range setting
 - (a) Set the number of points per station for data communication in simple inter-PLC link to the special register (D9178) with any of patterns 0 to 2 (0 to 2).

		Refresh Range				
		Pattern 0	Pattern 1	Pattern 2		
Link	Bit devices	0 points for each station	32 points for each station	64 points for each station		
devices	Word devices	4 points for each station	4 points for each station	8 points for each station		
Value set to D9178		0	1	2		

(b) Pattern 0 may only be used when the FX_{0N} is used. When using pattern 1 or 2, use the A1FXCPU or FX2N at all stations.

(c) Refresh range setting is required for the master station only.
 It is not needed for local stations.

(Local stations make data communication in the refresh range set in the master station.)

(d) When the refresh range has been set, the A1FXCPU uses the following devices for simple inter-PLC link. (Both the master and local stations occupy the same range.)

When transmitting data to the other station in simple inter-PLC link, write data to the devices specified for the station number of the host station.

[Devices used in pattern 0]

	Devices Used					
	Bit device	s: 0 points	Word devic	es: 4 points		
	A1FXCPU	FX series	A1FXCPU	FX series		
Station 0	-	_	W00 to W03	D0 to D3		
Station 1	_		W10 to W13	D10 to D13		
Station 2			W20 to W23	D20 to D23		
Station 3	_		W30 to W33	D30 to D33		
Station 4			W40 to W43	D40 to D43		
Station 5			W50 to W53	D50 to D53		
Station 6	_		W60 to W63	D60 to D63		
Station 7	-	_	W70 to W73	D70 to D73		

[Devices used in pattern 1]

	Device Numbers Used						
	Bit devices	: 32 points	Word devices: 4 points				
\sim	A1FXCPU	FX series	A1FXCPU	FX series			
Station 0	B000 to B01F	M1000 to M1031	W00 to W03	D0 to D3			
Station 1	B040 to B05F	M1064 to M1095	W10 to W13	D10 to D13			
Station 2	B080 to B09F	M1128 to M1159	W20 to W23	D20 to D23			
Station 3	B0C0 to B0DF	M1192 to M1223	W30 to W33	D30 to D33			
Station 4	B100 to B11F	M1256 to M1287	W40 to W43	D40 to D43			
Station 5	B140 to B15F	M1320 to M1351	W50 to W53	D50 to D53			
Station 6	B180 to B19F	M1384 to M1415	W60 to W63	D60 to D63			
Station 7	B1C0 to B1EF	M1448 to M1479	W70 to W73	D70 to D73			

[Devices used in pattern 2]

	Device Numbers Used			
	Bit devices: 64 points		Word devices: 8 points	
	A1FXCPU	FX series	A1FXCPU	FX series
Station 0	B000 to B03F	M1000 to M1063	W00 to W07	D0 to D7
Station 1	B040 to B07F	M1064 to M1127	W10 to W17	D10 to D17
Station 2	B080 to B0BF	M1128 to M1191	W20 to W27	D20 to D27
Station 3	B0C0 to B0FF	M1192 to M1255	W30 to W37	D30 to D37
Station 4	B100 to B13F	M1256 to M1319	W40 to W47	D40 to D47
Station 5	B140 to B17F	M1320 to M1383	W50 to W57	D50 to D57
Station 6	B180 to B1BF	M1384 to M1447	W60 to W67	D60 to D67
Station 7	B1C0 to B1FF	M1448 to M1511	W70 to W77	D70 to D77

(4) Retry count setting

(a) Set to the special register (D9179) the number of retries to be made when there is no response in simple inter-PLC link.

When there is no response at the preset count of link scans, the other stations judge that the corresponding station is in data transmission sequence error.

(b) Retry count setting is required for the master station only.It is not needed for local stations.(Local stations use the retry count set in the master station.)

- (5) Monitor time setting
 - (a) Set the period of time needed to determine that the master or local station is faulty in data transmission between the master and local stations. Set any to 5 to 255 (50ms to 2550ms) in 10ms increments.
 - (b) Monitor time setting is required for the master station only.
 It is not needed for local stations.

(Local stations monitor the response time from the master station in a period twice longer than the monitor time set in the master station.)

5.2.5 Link parameter setting method

Set the link parameters for simple inter-PLC link in the sequence program (link setting program).

- (1) Instructions for link setting program
 - (a) Write the link setting program under the following conditions.
 - If any of the following conditions is not satisfied, simple inter-PLC link is not performed.
 - Write the link setting program from step 0.
 - Write LD M9038 at the beginning (step 0) of the link setting program.
 - Use "MOV" instructions to store data into D9176-D9180. (The MOVP instruction must not be used.)
 - (b) The link parameters end at either of the following steps.
 - Step where there is a device other than D9176-D9180.
 - Step where there is an instruction other than LD M9038 and MOV instruction in the link setting program.

- (c) When the link setting program is proper, the values set are stored into D9173-D9175.
 - D9173: Corresponding station number setting status
 - D9174: Local station count setting status
 - D9175: Refresh range setting status

POINT

(1) The values within the specified ranges should be set to D9176-D9180.
If any of the D9176-D9180 values in link parameters is outside the specified range, LINK PARAM ERROR occurs and simple inter-PLC link is not made.
(However, if only the station numbers are proper, simple inter-PLC link is performed with default parameter values even when LINK PARAM ERROR has occurred.)

(2) Link parameter setting program example

The link setting programs shown below are designed for simple inter-PLC link in the following system.

The following table lists the link parameter setting items and set data.

Numbor	Namo	Setting	
Number	Naille	Master station	Local station
D9176	Corresponding station number	0	1
D9177	Number of local stations	1	_
D9178	Refresh range	1	_
D9179	Number of retries	5	
D9180	Monitor time	20	_

5. FUNCTIONS

CIRCUIT END

[Master station program example]
5.2.6 Checking for errors in simple inter-PLC link

Whether simple inter-PLC link is normal or abnormal can be checked by the special relays and special registers for simple inter-PLC link.

(1) Error checking special relays

Table 5.4 lists the special relays designed to check for errors at other stations in simple inter-PLC link.

Numbor	Namo	//Normal Judg	Abnormal jment	Usability	
Number	Name	Normal	Abnormal	Master station	Local station
M9183	Data transmission sequence error (master station)	OFF	ON	_	0
M9184	Data transmission sequence error (local station 1)				
M9185	Data transmission sequence error (local station 2)			0	О
M9186	Data transmission sequence error (local station 3)		ON		
M9187	Data transmission sequence error (local station 4)	OFF			
M9188	Data transmission sequence error (local station 5)				
M9189	Data transmission sequence error (local station 6)				
M9190	Data transmission sequence error (local station 7)				
M9191	Data transmission sequence in progress	ON	OFF	0	0
M9192	Error clear			0	0

Table 5.4 Special Relays for Simple Inter-PLC Link

O: Usable, —: Unusable

- (a) M9183: Data transmission sequence error (master station)
 - A flag used by the local station connected to simple inter-PLC link to determine whether the master station is normal or abnormal.
 - M9183 turns on when an error occurs in the master station during data transmission sequence execution.

M9183 turns off when the master station recovers from the error and resumes the data transmission sequence.

• When M9183 has turned on, the error definition can be checked with the error code stored in D9191 (data transmission error No. (master station)).

(b) M9184 to M9190: Data transmission sequence error (local station n)

- A flag used by the master or local station connected to simple inter-PLC link to determine whether there is a faulty local station or not.
- The corresponding special relay turns on when a data transmission sequence error occurs in a local station during data transmission sequence execution.

It turns off when the local station recovers from the error and resumes the data transmission sequence.

• When any of M9184 to M9190 has turned on, the error definition can be checked with the error code stored in any of D9192 to D9198 (data transmission error No. (local station n)).

(2) Error checking special registers

Table 5.5 lists the special registers designed to check for errors in simple inter-PLC link.

Number			Nama	Normal// Judg	Abnormal Iment	Usability	
A1FXCPU	FXON	FX2N	Name	Normal	Abnormal	Master station	Local station
D9183	—	_	Data transmission sequence error count (master station)	0	Other than 0		0
D9184	—	_	Data transmission sequence error count (local station 1)	Data transmission sequence error count (local station 1)			
D9185	—	—	Data transmission sequence error count (local station 2)				
D9186	—	—	Data transmission sequence error count (local station 3)				
D9187	_	_	Data transmission sequence error count (local station 4)	0	Other than 0	0	О
D9188	_	_	Data transmission sequence error count (local station 5)				
D9189	_	_	Data transmission sequence error count (local station 6)				
D9190	_	_	Data transmission sequence error count (local station 7)				
D9191	D211	D8183	Data transmission error number (master station)	0	Other than 0	_	0
D9192	D212	D8184	Data transmission error number (local station 1)				
D9193	D213	D8185	Data transmission error number (local station 2)				
D9194	D214	D8186	Data transmission error number (local station 3)				
D9195	D215	D8187	Data transmission error number (local station 4)	0	Other than 0	0	О
D9196	D216	D8188	Data transmission error number (local station 5)				
D9197	D217	D8189	Data transmission error number (local station 6)				
D9198	D218	D8190	Data transmission error number (local station 7)				

Table 5.5 Special Registers for Simple Inter-PLC Link

- (a) D9183: Data transmission sequence error count (master station)
 - The number of times M9183 turned from OFF to ON is stored.
- (b) D9184 to D9190: Data transmission sequence error count (local station n)
 - The numbers of times M9184 to M9190 turned from OFF to ON are stored in D9184 to D9190.
 - The following table indicates relationships between M9184-M9190 and D9184-D9190.

Station	A1FXCPU					
Number	Special relay	Special register				
Station 1	M9184	D9184				
Station 2	M9185	D9185				
Station 3	M9186	D9186				
Station 4	M9187	D9187				
Station 5	M9188	D9188				
Station 6	M9189	D9189				
Station 7	M9190	D9190				

(c) D9191: Data transmission error number (master station)

- The error code of the master station detected by the local stations connected to simple inter-PLC link is stored.
- For the error codes stored, refer to Section 5.2.6 (3).
- The error code is cleared when M9192 (error clear) is turned from OFF to ON after the corresponding station had recovered from the error and the data transmission sequence has resumed.

(d) D9192 to D9198: Data transmission error number (local station n)

- The error code of the local station detected by the master/local stations connected to simple inter-PLC link is stored.
- For the error codes stored, refer to Section 5.2.6 (3).
- The error code is cleared when M9192 (error clear) is turned from OFF to ON after the corresponding station had recovered from the error and the data transmission sequence has resumed.

(3) Error code list

Table 5.6 lists error codes stored into the data transmission error code storing data registers of the stations which detected errors at occurrence of data transmission sequence errors.

Error Code	Error Item	Station Where Error Occurred	Station Which Detected Error	Error Definition	Check Items
01H	Monitor time-out	Local station	Master station	Local station does not respond to the send request of the master station after monitor time has elapsed.	Cable wiring Local station power supply
02H	Station number error	Local station	Master station	Another local station responded to the send request of the master station.	Cable wiring
03H	Counter error	Local station	Master station	Counter value in transmission data differs from the counter value returned by the local station.	Cable wiring
04H	Transmission format error	Local station	Master station Local station	Message returned by the local station is incorrect.	Cable wiring Local station power supply Station number setting
11H	Monitor time-out	Master station	Local station	After monitor time has elapsed, the master station does not provide a send request, parameters and master station sending data to the next local station.	Cable wiring Master station power supply
14H	Transmission format error	Master station	Local station	Transmission format error	Cable wiring Master station power supply Station number setting
21H	Local station no-response error	Local station	Local station ^{*1}	Local station does not exist.	Cable wiring Local station power supply Station number setting
22H	Station number error	Local station	Local station *1	Another local station responded to the send request of the master station.	Cable wiring
23H	Counter error	Local station	Local station *1	Counter value in transmission data differs from the counter value returned by the local station.	Cable wiring
31H	Parameter unreceived	Local station	Local station *2	With no parameters received, a send request was received from the master station.	Cable wiring Master station power supply
32H	Receive buffer error	All stations	Host station	As the next data was received prior to the end of receive data processing, unprocessed data was accumulated to fill the receive buffer.	Monitor time (Monitor time should be longer than A1FXCPU scan time.)

Table 5.6 Error Code List

*1: Local stations other than the one where the error occurred

*2: Local station where the error occurred

5.2.7 Loopback self-check

The A1FXCPU can self-check whether its simple inter-PLC link function operates properly or not (loopback self-check).

This check judges whether data sent from SDA/RDA and SDB/RDB can be received by SDA/RDA and SDB/RDB properly to determine whether the function is normal or abnormal.

- (1) Operation procedure
 - (a) When a cable is connected to SDA/RDA and SDB/RDB for simple inter-PLC link, disconnect the cable from the terminal block after switching off the power of the A1FXCPU.
 - (b) Move the RUN/STOP switch of the A1FXCPU to the "STOP" position. *1
 - (c) Switch on the power of the A1FXCPU.
 - (d) Turn on the special relay M9193 in the test mode of the peripheral. $^{\star 2}$
 - When the function is normal, the "L RUN" LED is lit and "SD" and "RD" flicker.
 - (Since "SD" and "RD" flicker fast, they appear as if they are lit.)
 - When the function is abnormal, "SD" and "RD" are extinguished. (The "L RUN" LED goes off when M9193 is turned off.)

- (e) To end the loopback self-check, turn off the special relay M9193 in the test mode of the peripheral.
- (2) Action to be taken after end of loopback self-check
 - (a) When the function is normal, start simple inter-PLC link in the following procedure.
 - Shut off the power of the A1FXCPU in all phases.
 - Connect the A1FXCPU, FXoN and FX2N series modules by cables.

A1FXCPU or by resetting the A1FXCPU by the RESET switch.)

- Switch on the power of the A1FXCPU.
- When there is no link setting program written, move the RUN/STOP switch to the STOP position and write the link setting program from the peripheral to the A1FXCPU.
- When the RUN/STOP switch of the A1FXCPU is moved from STOP to RUN, simple inter-PLC link starts.
 (Simple inter-PLC link is also started by switching on the power of the
- (b) When the function is abnormal, the possible cause is an A1FXCPU hardware fault. Therefore, change the A1FXCPU.

POINT

•*1: The loopback self-check may only be made when the A1FXCPU is in the STOP mode.

When the A1FXCPU is in the RUN mode, the loopback self-check cannot be made if M9193 is turned on.

•*2: The loopback self-check may be performed if there is no link setting program written.

5.3 Simple positioning control function

(1) Simple positioning control function

One servo amplifier and one stepping motor driver may be connected to the A1FXCPU to exercise simple positioning control with max. 60kpps pulses output.

(2) Positioning data (refer to Section 5.3.4)

In simple positioning control, set the following positioning data to the special relays and special registers.

- Pulse output logic method (negative logic, positive logic)
- Pulse output method (CW/CCW, PULSE/SIGN)
- Start/stop frequency
- Running frequency
- Acceleration/deceleration time
- Number of output pulses
- Setup time when PULSE/SIGN method is selected
- (3) Starting the simple positioning control (pulse output start, refer to Section 5.3.5) In simple positioning control, the X and Y axes can be started independently or simultaneously.

However, linear interpolation of two axes cannot be made.

(4) Checking the simple positioning control (pulse output) status (refer to Section 5.3.6)

The simple positioning control status can be checked with the special relays. The numbers of output pulses can also be checked with the special registers.

5.3.1 Instructions for the simple positioning control function

Observe the following instructions for executing simple positioning control.

(1) Use of simple positioning control must be specified

The simple positioning control outputs may be used in two different ways: "simple positioning control" and "general-purpose outputs".

To carry out simple positioning control, the following special relays must be turned on.

• M9128: Turned on when the X axis is used for simple positioning control.

• M9138: Turned on when the Y axis is used for simple positioning control.

When M9128 and M9138 are off, the outputs corresponding to the axes which are off act as general-purpose outputs. (Refer to Section 5.6.)

(2) Importing the positioning data

There are two types of simple positioning data: data which is made valid at the END processing of the preset scan; and data which is made valid at the start of positioning.

(3) Simple positioning control in incremental system

Simple positioning control is exercised in the incremental system where the number of output pulses (travel) is specified. (The number of output pulses can be set between 0 and 16777215 pulses.)

Specify the traveling direction by switching on/off the following special relays. (Refer to Section 5.3.5)

- M9129: For X axis
 - OFF for forward rotation direction, ON for reverse rotation direction.
- M9139: For Y axis

OFF for forward rotation direction, ON for reverse rotation direction.

(4) Address management

Because of the incremental system, simple positioning control manages addresses internally. (The number of output pulses provided after start of pulse output is stored in the present output pulse count storing special registers.) When making address management as a system, the number of pulses (travel) in the present output pulse count storing special registers should be incremented or decremented in the sequence program to calculate the present value.

- (5) Switching from RUN mode to STOP mode during positioning control During pulse output, do not move the RUN/STOP switch to the "STOP" position. Doing so will cause the axes to decelerate to a stop.
- (6) Zeroing

There is no zeroing function in simple positioning control.

5.3.2 Procedure for simple positioning control

Use the following procedure to exercise simple positioning control.

5.3.3 Wiring for simple positioning control

The following diagrams show connection examples of the A1FXCPU for simple positioning.

(1) Example of connection with the MR-H

- *1: Limit switch for servo (stop).
- *2: For connection details, refer to the Specifications and Installation Guide of the MR-H servo amplifier.
- *3: Indicates a distance between A1FXCPU and amplifier.

(2) Example of connection with the MR-J2 A

- *1: Limit switch for servo (stop).
- *2: For connection details, refer to the Specifications and Installation Guide of the MR-J2 servo amplifier.
- *3: Indicates a distance between A1FXCPU and amplifier.

(3) Example of connection with the MR-J A

- *1: Limit switch for servo (stop).
- *2: For connection details, refer to the Specifications and Installation Guide of the MR-J servo amplifier.
- *3: Indicates a distance between A1FXCPU and amplifier.

(4) Example of connection with the MR-C A

- *1: Limit switch for servo (stop).
- *2: For connection details, refer to the Specifications and Installation Guide of the MR-C servo amplifier.
- *3: Indicates a distance between A1FXCPU and amplifier.

(5) Example of connection with stepping motor driver

Grounding (wire of 0.75mm² or more)

5.3.4 Setting for simple positioning control (setting of positioning data)

Use the special relays and special registers to set the positioning data.

(1) Special relays for setting the positioning data

Special relays are used to set the pulse output logic and pulse output methods according to the servo amplifier and stepping driver connected.

They are also used to set whether simple positioning control is used or not.

Once set, these data are not changed during control. Hence, set the special relays at the first scan after power is switched on or the CPU is reset by the RESET switch.

Special relay settings are imported at the END processing of the preset scan. Positioning cannot be started at the scan where special relays have been set.

			Operation	at ON/OFF	What Are Set			
Relevant Axis	Number	Name	OFF	ON	Use of X axis	Use of Y axis	Use of simultaneous start	
	M9126	Pulse output logic switching	Negative logic	Positive logic	0		0	
X axis	M9127	Pulse output method	CW/ CCW	PULSE/ SIGN	0	_	0	
	M9128	Whether simple positioning control is used or not	Not used	Used	0		0	
	M9136	Pulse output logic switching	Negative logic	Positive logic	_	0	0	
Y axis	M9137	Pulse output method	CW/ CCW	PULSE/ SIGN	—	0	0	
	M9138	Whether simple positioning control is used or not	Not used	Used		0	0	

Table 5.7 Special Relays for Setting the Positioning Data

O : Must be set. — : Need not be set.

- (a) Pulse output logic switching (M9126/M9136)
 - 1) Turn on when the drive unit uses positive logic.
 - 2) Turn off when the drive unit uses negative logic.
- (b) Pulse output method switching (M9127/M9137)
 - 1) Turn on when the drive unit uses PULSE/SIGN.
 - 2) Turn off when the drive unit uses CW/CCW.
 - 3) Relationships between pulse output switching and pulse outputs by pulse output switching setting are shown below.

Pulse Output	Positiv	e Logic	Negativ	/e Logic
Method	Forward rotation	Reverse rotation	Forward rotation	Reverse rotation
CW CCW	High Low High Low		High Low High Low	
PULSE SIGN	High Low High Low		High Low JIIII High Low	

(c) Whether simple positioning control is used or not (M9128/M9138)

- Turn on when using the outputs (4 points) of the A1FXCPU for simple positioning since the "pulse output logic" and "pulse output method" when M9128/M9138 is turned from OFF to ON are made valid. When M9128/M9138 is off, the outputs serve as general-purpose outputs (transistor outputs: Y10 to Y13).
- Set M9128/M9138 at the first scan after power is switched on or the CPU is reset by the RESET switch.

Before turning on M9128/M9138, set the "pulse output logic" and "pulse output method".

 When M9128/M9138 has been turned on to choose simple positioning control, do not turn M9128/M9138 off at any point during positioning.

(2) Special registers for setting the positioning data

Special registers are used to set the speeds, travels, etc. for positioning. Set data to the special registers before outputting pulses by the pulse output start signal (M9130/M9140/M9133).

Table 5.8 indicates the special registers used for setting the positioning data.

							What Ar	e Set
Relevant Axis	Number	Name	Unit	Default Value	Setting Range	Use of X axis	Use of Y axis	Use of simultaneous start
	D9140	Start/stop frequency	Hz	0	0 to 60000	0		0
	D9141	Running frequency	Hz	1	1 to 60000	0		0
	D9142	Acceleration/deceleration time	ms	1	1 to 32767	0		0
X axis	D9143	Number of output pulses	nulaa	0	0 to	0		0
	D9144	Number of output pulses	puise	0	16777215			0
	D9150	Setup time when PULSE/SIGN method is selected	μS	1000	0 to 32767	Δ		Δ
	D9145	Start/stop frequency	Hz	0	0 to 60000		0	0
	D9146	Running frequency	Hz	1	1 to 60000	_	0	0
	D9147	Acceleration/deceleration time	ms	1	1 to 32767		0	0
Y axis	D9148	Number of output nulses		0	0 to			0
	D9149	Number of output pulses	puise	0	16777215		0	0
	D9151	Setup time when PULSE/SIGN method is selected	μS	1000	0 to 32767		Δ	Δ

 Table 5.8 Special Registers for Setting the Positioning Data

O: Must be set. —: Need not be set.

 Δ : Must be set only when PULSE/SIGN method is chosen

REMARKS

 The following diagram shows the relationships between start/stop frequency, running frequency and acceleration/deceleration time set in Table 5.8. The terms within parentheses are used for the A series positioning modules.

 The number of output pulses in Table 5.8 is the "positioning address/travel" when used for the MELSEC-A series positioning modules.

- (a) Start/stop frequency (D9140/D9145)
 - 1) Set the frequency used when pulse output is started and stopped.

Speed is increased/decreased from/to the specified start/stop frequency to/from the running frequency.

2) Set the start/stop frequency within the 0 to 60000Hz range to the value with which the following condition is satisfied.

3) When the start/stop frequency and running frequency are the same, the preset acceleration/deceleration time is ignored and the following operation is performed.

- 4) The preset start/stop frequency is made valid in the END processing of the scan where the pulse output start signal (M9130, M9133, M9140) switches from OFF to ON.
- (b) Running frequency (D9141/D9146)
 - 1) Set the frequency used when simple positioning is performed.
 - 2) Set the running frequency within the 1 to 60000Hz range to the value with which the following condition is satisfied.

(Start/stop frequency) \leq (running frequency)

 The preset running frequency is made valid in the END processing of the scan where the pulse output start signal (M9130, M9133, M9140) switches from OFF to ON.

REMARKS

1) The 16-bit data of the MELSEC-A series is signed and represented as -32768 to 32767.

Hence, any value greater than 32768 cannot be set in decimal.

When setting the start/stop frequency and running frequency of 32768Hz or higher from the peripheral, convert 32768 to 60000Hz into hexadecimal numbers before setting.

For example, set 32768 as 8000H and 60000 as EA60H.

- (c) Acceleration/deceleration time (D9142/D9147)
 - 1) Set the time required to reach the running frequency from pulse output start (acceleration time) and the time required to make a stop from the running frequency (deceleration time).

The acceleration time and deceleration time are the same value.

- 2) The preset acceleration/deceleration time is made valid in the END processing of the scan where the pulse output start signal (M9130, M9133, M9140) switches from OFF to ON.
- (d) Number of output pulses (D9143, D9144/D9148, D9149)
 - 1) Set the travel for simple positioning.
 - Set any of 0 to 16777215 as the number of output pulses.
 Use the rotation direction switching register (M9129/M9139) to change the

moving direction. Setting of 0 provides no pulse output and resets the present output pulse count storing special registers (D9136, D9137/D9138, D9139) to 0 to terminate simple positioning.

3) If the number of output pulses set is too small to reach the running frequency, the operation as shown below is performed.

- 4) The output of the preset number of pulses is started in the END processing of the scan where the pulse output start signal (M9130, M9133, M9140) switches from OFF to ON.
- (e) Setup time when PULSE/SIGN method is chosen (D9150/D9151)
 - 1) Set the time from when the SIGN signal is switched until pulse output from the A1FXCPU is made valid in the drive unit.

When the pulse output method is CW/CCW, the setup time setting is invalid.

5.3.5 Pulse output starting (positioning starting) and stopping signals

Use the special relays in Table 5.9 to start and stop pulse outputs.

			Ор	eration at ON/C	DFF	Validity of ON/OFF		
Relevant Axis	Number	Name	ON	OFF→ON	OFF	Use of X axis	Use of Y axis	Use of si- multaneous start
	M9129	Rotation direction switching	Forward rotation	_	Reverse rotation	0	_	0
X ovio	M9130	Pulse output start signal	No proc- essing	Pulse output start	No proc- essing	0	—	_
X axis	M9131	Deceleration to stop	No proc- essing	Deceleration to stop	Stop	0		O* ²
	M9132	Forced stop	No proc- essing	Immediate stop	Stop	0		O* ²
	M9133	Pulse output start signal	No proc- essing	Pulse output start	No proc- essing			0
X, Y axes (Simul-	M9134	Deceleration to stop	No proc- essing	Deceleration to stop	Stop	0* ¹	0* ¹	0
taneous)	M9135	Forced stop	No proc- essing	Immediate stop	Stop	0* ¹	O* ¹	0
	M9139	Rotation direction switching	Forward rotation	_	Reverse rotation	_	0	0
Y axis	M9140	Pulse output start signal	No proc- essing	Pulse output start	No proc- essing		0	
	M9141	Deceleration to stop	No proc- essing	Deceleration to stop	Stop	_	0	O* ³
	M9142	Forced stop	No proc- essing	Immediate stop	Stop		0	O* ³

Table 5.9 Special Relays Used to Start and Stop Pulse Outputs

O: Valid —: Invalid

- 1) *1: Decelerates the X/Y axis to a stop or forces it to stop.
- 2) *2: Decelerates the X axis to a stop or forces it to stop.
- 3) *3: Decelerates the Y axis to a stop or forces it to stop.

- (1) Rotation direction switching (M9129/M9139)
 - (a) Turn on when positioning the axis in the reverse rotation direction. Turn off when positioning the axis in the forward rotation direction.

Potation Direction		Pulse Output Direction			
Switching	Relevant Axis	Forward rotation direction	Reverse rotation direction		
M9129	X axis	OFF	ON		
M9139	Y axis	OFF	ON		

(b) Since the rotation direction switching command is made valid on the leading edge (OFF to ON) of the pulse output start signal (M9130, M9140, M9133), the rotation direction can be changed per positioning control.

REMARKS

1) For details of the pulse output status (M9143/M9144), refer to Section 5.3.6.

- (2) Pulse output start signal (M9130/M9140/M9133)
 - (a) Turn on when starting positioning.
 - (b) Pulse output is provided in the END processing of the scan where M9130/M9140/M9133 is turned on.

M9130/M9140/M9133 should be switched on for 1 or more scans of the sequence program.

Positioning is not performed when M9130/M9140/M9133 is off in END processing.

POINT

- (1) To minimize the influence of the sequence program scan time on the delay time at the start of the pulse output, turn on M9130/M9140/M9133 near the END instruction.
- (2) If executing a COM instruction of a link refresh soon after turning the M9130/M9140/M9133 on, a pulse processing is performed by the COM instruction. M9143/M9144 signals, which tell the pulse status (refer to Section 5.3.6), are turned on with the COM instruction execution.

[Processing performed when M9130/M9140/M9133 is turned on]

[Processing performed when M9130/M9140/M9133 is turned off during 1 scan]

(c) Pulse output is not provided if the pulse output start signal is turned from off to on while the stop signal is on.

No processing is performed when the pulse output start signal is turned from off to on during pulse output.

(d) Start time

The following formulas indicate times required from when the rise of the pulse output start signal (M9130/M9140/M9133) is accepted at END processing until when pulse output is provided.

(X/Y axis start time) = 0.30 + T1 (s) (Simultaneous X and Y axis start time) = 0.46 + T1 (s)

Operation performed up to pulse output is shown below.

- (3) Deceleration to stop (M9131/M9141/M9134)
 - (a) Turn on when decelerating the axis being positioned to a stop.
 - M9131: Deceleration of the X axis to a stop
 - M9141: Deceleration of the Y axis to a stop
 - M9134: Simultaneous deceleration of the X and Y axes to a stop
 - (b) There is a maximum of 10ms delay between when M9131/M9141/M9134 turns on and when the corresponding axis (axes) starts (start) decelerating.

(c) While M9131/M9141/M9134 is on, pulse output is not provided if the pulse output start signal (M9130/M9140/M9133) is turned from off to on.

At this time, a setting error occurs and M9145/M9146 turns on. (Refer to Section 5.3.7.)

- M9145: X axis
- M9146: Y axis

Setting error occurs since M9131/M9141/M9134 is on when M9130/M9140/M9133 turns on.

- (4) Forced stop (M9132/M9142/M9135)
 - (a) Turn on when forcing the axis being positioned to stop.
 - M9132: Forced stop of the X axis
 - M9142: Forced stop of the Y axis
 - M9135: Simultaneous forced stop of the X and Y axes
 - (b) There is a maximum of 10ms delay between when M9132/M9142/M9135 turns on and when the corresponding axis (axes) stops (stop).
 When the forced stop is turned on, the axis stops in units of 1 pulse.
 For example, when the forced stop is turned from off to on at Low level in negative logic, the axis stops after 1 pulse has fully been output.
 When the forced stop is turned from off to on at High level in negative logic, the axis stops immediately.

(c) While M9132/M9142/M9135 is on, pulse output is not provided if the pulse output start signal (M9130/M9140/M9133) is turned on.

At this time, a setting error occurs and M9145/M9146 turns on. (Refer to Section 5.3.7.)

- M9145: X axis
- M9146: Y axis

Setting error occurs since M9132/M9142/M9135 is on when M9130/M9140/M9133 turns on.

5.3.6 Confirming the positioning statuses

In simple positioning, the "pulse output status" and "number of output pulses" can be confirmed.

(1) Pulse output status

(a) The pulse output status can be confirmed by checking whether the special relay (M9143/M9144) is on or off.

Г	Relevant Axis	Number	Name	Description
	X axis	M9143	Pulse output status	OFF : Pulse output stop
	Y axis	M9144		ON : During pulse output
Sequence program	END	Step 0	END Step 0 EN	ID Step 0
Pulse output start comm (M9130/M9140/M9133)	ON OFF Desig	gnation of forwa	ard rotation ON	Designation of reverse rotation direction pulse output
Rotation direction switch (M9129/M9139)	OFF / direct	tion pulse outp	ut	
Pulse output status (M9129/M9139)	OFF			
CW			11	
ccw	/ <u>ON</u>		OFF	
For negative	logic			

(b) The pulse output start signal (M9130/M9140/M9133) should be turned from off to on when M9143/M9144 is off.

Axis Relevant to	Pulse Output Start	ON Condition of Pulse Start Signal			
Pulse Output	Signal	M9143	M9144		
X axis	M9130	OFF	OFF/ON		
Y axis	M9140	OFF/ON	OFF		
X, Y axes (simultaneous start)	M9133	OFF	OFF		

(2) Present output pulse count

The number of pulses output after the pulse output start signal has been turned on can be confirmed by checking the special registers (D9136 to D9139).

	Relevant Axis	Number	Nam	е	Description
	Y avis	D9136	Present	Lower 16 bits	 Store the number of pulses output after the pulse output start signal
	A dais	D9137	count	Upper 8 bits	has been turned on. • The output pulse count is updated
	X ovio	D9138	Present	Lower 16 bits	at END processing. Write by the user is inhibited.
	f axis	D9139	count	Upper 8 bits	
Sequence program	END	Step 0	END	Step 0	END Step 0
Pulse output start (M9130/M9140)	OFF		Ţ		Designation of reverse rotation
Rotation direction setti (M9129/M9139)	ng OFF dir	ection pulse	forward rotation output		<u></u>
Pulse output status (M9143/M9144)	OFF			↓	1
Present output pulse c D9136, D9137 /D9138, D9139	ount	to (Specified r	number of pulses)		0 to (Specified number of pulses)
		Output pu	Ilse count is upda	\ Ou ted at END p	utput pulse count is retained.

5.3.7 Checking for errors in simple positioning control

This section describes errors which are detected when simple positioning is performed by the A1FXCPU.

(1) Errors

Pulse output is provided when no error is found by an error check made at the END processing of the scan where the simple positioning pulse output start signal (M9130/M9140/M9133) is turned on. Pulse output is not provided when an setting error occurs since.

- The specified positioning data is outside the setting range
- Start/stop frequency > running frequency
- For X axis start
 - M9130 was turned on when M9128 was off
 - M9130 was turned on while any of M9131, M9132, M9134 and M9135 was on
- For Y axis start
 - M9140 was turned on when M9138 was off
 - M9140 was turned on while any of M9141, M9142, M9134 and M9135 was on
- For simultaneous start
- M9133 was turned on when M9128 and M9138 were not on
- M9133 was turned on while any of M9131, M9132, M9134, M9135, M9141 and M9142 was on
- (2) Error check

M9145/M9146 turns on if an error exists when the pulse output start signal is turned on for simple positioning.

- M9145: X axis
- M9146: Y axis

REMARKS

The following special relays are used for error check. For details, refer to Section 5.3.4.

Relevant Axis	Number	Name		
X axis	M9128	Simple positioning control use		
	M9130	Pulse output start		
	M9131	Deceleration to stop		
	M9132	Forced stop		
X, Y axes	M9133	Pulse output start		
	M9134	Deceleration to stop		
	M9135	Forced stop		
Y axis	M9138	Simple positioning control use		
	M9140	Pulse output start		
	M9141	Deceleration to stop		
	M9142	Forced stop		

5.3.8 Program examples

Program examples for simple positioning are given below.

(1) System configuration

(a) The system configuration used for program examples is shown below.

- (2) X-axis jog operation program
 - (a) Motions in jog operation
 - While the forward rotation jog command (X20) is on, the axis is positioned in the forward direction and stops when the forward rotation jog command switches off.
 - While the reverse rotation jog command (X21) is on, the axis is positioned in the reverse direction and stops when the reverse rotation jog command switches off.
 - When the forward/reverse rotation jog command does not switch on, the axis stops after 16777215 pulses are output.

[เ บเพลเน	iotation jog operation		
Frequency		Start/stop frequency and running frequency are set to the same number of pulses.	
1	10 <u>0</u>		ı
			Time
Deceleration to sto (M9131)	^p OFF		
Pulse output star (M9130)	t <u>OFF</u>		
Forward rotation jog comman	d OFF		
Rotation direction (M9129)	OFF		
[Reverse	rotation jog operation]		
F	requency	Start/stop frequency and running frequency are set to the same number of pulses.	
1	100		ı
			Time
Deceleration to sto (M9131)	^p OFF	ON .	
Pulse output star (M9130)	t OFF		
Forward rotation jog comman (X21)	d OFF	ON	
Rotation direction (M9129)	OFF		

[Forward rotation jog operation]

5. FUNCTIONS

M9038 Λ M9126 H -[SET Sets positive logic. -[RST M9127] Sets CW/CCW. Sets that simple positioning -[SET M9128] is used. X0020 Accepts forward rotation jog 10 -[PLS MO command ON. MO M5 -1/ M9128 M9143 14 -[PLS M1 Н Forward rotation jog start command. Switches on interlock signal for use -[SET M2 } during forward rotation jog operation. X0021 Accepts reverse rotation jog command 22 [PLS MЗ Н ON M9128 M9143 MЭ M2 26 [PLS M4 Reverse rotation jog start command. Н Switches on interlock signal for use [SET M5 } during reverse rotation jog operation. 34 [RST M9129] Sets forward rotation direction. 38 **SET** M9129 H Sets reverse rotation direction. М1 -| |-P K 100 42 -TMOV D9141 H Sets start/stop frequency (100Hz). M4 P -TMOV 100 D9142] Sets running frequency (100Hz). PK [DMOV 16777215 Sets output pulse count (maximum D9143] value). [SET M9130 H Switches on pulse output start signal. X0020 M2 Accepts forward rotation jog command 64 [PLF M6 7 OFF. (End of forward rotation jog) X0021 M5 Accepts reverse rotation jog command 69 -[PLF M7 } OFF. (End of reverse rotation jog) M9143 Switches on deceleration-to-stop 74 -[SET M9131]signal. M9143 M9130 Switches off pulse output start signal 80 **-F**RST M9130] when pulse output starts. M9143 M9131 Switches off deceleration-to-stop 85 -[RST M9131] signal when pulse output stops. Switches off interlock signal for use -**F**RST M2 F during reverse rotation jog operation. Switches off interlock signal for use -[RST M5 ŀ during forward rotation jog operation. CIRCUIT END

(b) Jog operation program

MELSEC-A

- (3) X-axis simple positioning program
 - (a) Motions in simple positioning
 - Pulse output starts when simple positioning start (X25) is turned on. At this time, the rotation direction is set by rotation direction setting (ON/OFF of X24).
 - X24 OFF: Forward rotation direction
 - X24 ON : Reverse rotation direction
 - The axis is decelerated to a stop when the stop command (X26) is turned on during pulse output.
 - When the restart command (X27) is turned on after deceleration to stop, the axis is restarted from the stop position (output of remaining pulses).
 - When simple positioning start (X25) is turned on after deceleration to stop, the specified number of pulses are output to the axis at the stop position.

Setting of remaining pulse count

5. FUNCTIONS

- (4) Simultaneous start program
 - (a) Motions in simultaneous start
 - X and Y axis pulse outputs start when simultaneous start (X2C) is turned on. At this time, the rotation directions are set by rotation direction setting (ON/OFF of X24 and X25).

Rotation Direction	X24		X25	
Setting	OFF	ON	OFF	ON
X axis	Forward rotation	Reverse rotation	_	_
Y axis			Forward rotation	Reverse rotation

- The axes are decelerated to a stop when the stop command (X2D) is turned on during pulse output.
- When the restart command (X2E) is turned on after deceleration to stop, the axes are restarted from the stop position (output of remaining pulses).
- When simultaneous start (X2C) is turned on after deceleration to stop, the specified numbers of pulses are output to the axes at the stop position.

5. FUNCTIONS

MELSEC-A

0	M9038					{SET	M9126]	Sets positive logic (X axis).
						[RST	M9127]	Sets PULSE/SIGN (X axis).
	-					[SET	M9128]	Sets that simple positioning is used (X axis).
	-					[SET	M9136]	Sets positive logic (Y axis).
	-					[RST	M9137]	Sets PULSE/SIGN (Y axis).
						[SET	M9138]	Sets that simple positioning is used (Y axis).
19	M42 	M9143 M9144 	D9143	D9136	}		<u> </u>	
	0	- [D= D9148	D9138]		[RST	M42]-	Switches off pulse outputting signal on completion of X-, Y-axis pulse outputs.
45						———[PLS	M40]	Accepts simple positioning start.
49	M40 ⊢ ├──	M9128 M9138 M91 	43 M9144 X(202D		[PLS	M41]	Simple positioning command.
	M/1	¥0024				[SET	M42]-	Switches on pulse outputting signal.
59		лоо24 И	<u> </u>			[RST	M9129]	Sets forward rotation direction (X axis).
	-	X0024 				[SET	M9129]	Sets reverse rotation direction (X axis).
	-		······			[MOV 30000	D9141]	Sets running frequency (30kHz) (X axis).
						–[MOV 1000	D9142]	Sets acceleration/deceleration time (1 sec.) (X axis).
	-				[DMOV	K 1500000	D9143]	Sets output pulse count (1500000) (X axis).
	-					[RST	M9139]	Sets forward rotation direction (Y axis).
						{SET	M9139]	Sets reverse rotation direction (Y axis).
	-					-[MOV 30000	D9146 🕇	Sets running frequency (30kHz) (Y axis).
	-					[MOV 1000	D9147]	Sets acceleration/deceleration time (1 sec.) (Y axis).
	-			- <u></u>	P [DMOV	K 1500000	D9148]	Sets output pulse count (1500000) (Y axis).
	-					{SET	M9133]	Switches on simultaneous pulse output start signal.
			<u>_</u>			[RST	M44 }	Switches off restart signal.

5. FUNCTIONS

MELSEC-A

5.4 High-Speed Counter Function

(1) High-speed counter function

Two encoders may be connected to count up to 60kpps pulses input.

When the set value matches the count value, an interrupt program (I12, I13) can be executed.

(2) Counter function

The following counters can be used for the high-speed counter function.

Nar	ne	Description
		Changes the present value of the counter.
Preset function		Preset operation can be done either by a sequence
		program or by an external preset input.
Ding counter functi	ion.	Counting alternates between the preset value and the
Ring counter functi	011	ring counter value
	Count disable	Stops counting pulses while the signal of the counter
Countor function	function	function selection start command is ON.
	Latch counter function	Stores the present value of the counter into the spe-
Selection		cial registers when the signal of the counter function
		selection start command is input.
		Outputs an ON/OFF signal internally (switches on/off
Coincidence output function		the special relay) in a preset output status of any
		channel, comparing it with the present value of the
		counter.
		An interrupt program (I12/I13) can also be run.

5.4.1 Instructions for the high-speed counter function

(1) Encoders that may be connected

"Open collector output type" encoders can be connected for the high-speed counter function of the A1FXCPU.

(2) High-speed counter data setting

The following high-speed counter function data should be set before count enable (M9154/M9174) is turned on.

- Ring counter setting (M9157/M9177) (only when ring counter function is used)
- Counter function selection setting (D9159/D9169)
- Counting speed selection (M9158/M9178)
- Pulse input mode (D9154/D9164)
- (3) Restrictions made when ring counter function is selected
 - (a) When the ring counter function is selected (M9157/M9177: ON), the coincidence interrupt function cannot be used.
 - (b) The ring counter function is not activated when counter value coincidence (M9148/M9168) is on. After setting the "coincidence output set value (D9157, D9158/D9167, D9168)" used for the ring counter, turn on the coincidence signal reset command (M9151/M9171) to reset the counter value coincidence.
- (4) Interrupt input priority
 - The interrupt priority is as follows.

Priority	Interrupt Pointer	Name					
High	10	External interrupt input (X0)					
	11	External interrupt input (X1)					
	12	External interrupt input (X2)					
	13	External interrupt input (X3)					
	14	External interrupt input (X4)					
	15	External interrupt input (X5)					
	112	Coincidence output of high-speed counter function (CH.1)					
	113	Coincidence output of high-speed counter function (CH.2)					
	131	Time interrupt (10ms)					
↓	130	Time interrupt (20ms)					
Low	129	Time interrupt (40ms)					

- When one interrupt occurs during interrupt program execution, the interrupt program corresponding to the next interrupt is executed on completion of that interrupt program execution.
- When two or more interrupts occur during interrupt program execution, the interrupt program corresponding to the highest-priority interrupt is executed on completion of that interrupt program execution.
- For example, when interrupt inputs corresponding to 15 and 12 take place during execution of the 14 interrupt program, 12 interrupt is executed on a priority basis. (When using interrupt programs, refer to the instructions in Section 5.5.1.)

5.4.2 Wiring for use of the high-speed counter function

The connection example shown below is designed for use of the high-speed counter function.

5.4.3 Special relays/special registers for use of the high-speed counter function

This section explains the special relays and special registers used when the high-speed counter function is used.

(1) Special relays

The high-speed counter function uses the special relays indicated in Table 5.10.

Device Numbers		Cia	Signal Nama		ON/OFF
CH.1	CH.2	Signal Name		Timing	by User
M9147	M9167	Counter value gre	ater		
M9148	M9168	Counter value coir	ncidence		Disallowed
M9149	M9169	Counter value less	8		Disalioweu
M9150	M9170	External preset re-	quest detection		
M9151	M9171	Coincidence signa	al reset command	During ON	
M9152	M9172	Preset command		OFF→ON	
M9153	M9173	Down count comm	hand	During ON	
M9154	M9174	Count enable		During ON	
M9155	M9175	Present value read	d request	OFF→ON	
M9156	M9176	External preset de	etection reset command	During ON	Allowed
M9157	M9177	Ring counter setting	Ring counter setting		
M9158	M9178	Counting speed selection		During ON	
M0150	M0170	Counter function	Disable function	During ON	
M9129	M9179	command	Latch counter function	OFF→ON	

Table 5.10 Special Relays for High-Speed Counter

- (a) Counter value greater (M9147/M9167)
 - 1) Turned on when (count value)>(coincidence output set value).
 - 2) Turned off when (count value)≦(coincidence output set value).
- (b) Counter value coincidence (M9148/M9168)
 - 1) Turned on when (count value)=(coincidence output set value).
 - 2) Latched on if (count value)≠(coincidence output set value).
 - Counter value coincidence can be reset (turned off) by turning on the coincidence signal reset command (M9151/M9161).

POINT

 (1) When the A1FXCPU is switched on or reset by the RESET switch, M9148/ M9168 turns on because the count value and coincidence output set value are both 0.
 Switch on the coincidence signal reset command (M9151/M9161) after

starting count operation or after writing data to the coincidence output set value.

- (c) Counter value less (M9149/M9169)
 - 1) Turned on when (count value)<(coincidence output set value).
 - 2) Turned off when (count value)≥(coincidence output set value).
- (d) External preset request detection (M9150/M9170)
 - 1) Turned on the leading edge of the external preset request signal (X8, X9).
 - 2) Latched on if the external preset request signal (X8, X9) switches off.
 - Reset (turned off) when the external preset detection reset command (M9156/M9176) is turned on.
- (e) Coincidence signal reset command (M9151/M9171)
 - 1) Turn this signal on when resetting the counter coincidence signal (M9148/M9168).
 - 2) The coincidence reset command is valid while it is on.
- (f) Preset command (M9152/M9172)
 - 1) Turn this signal on when writing the data of the preset value storing special registers (D9152, D91543/D9162, D9163) as a preset value.
 - 2) The preset command is valid on its leading edge (OFF to ON). Preset cannot be made if it remains on.
- (g) Down count command (M9153/M9173)
 - 1) Turn this signal on when performing down counting in the 1-phase mode of the pulse input system.
 - 2) Up counting is performed when the down count command is off.
 - 3) In the 2-phase mode of the pulse input system, ON/OFF of the down count command is invalid.
- (h) Count enable (M9154/M9174)
 - 1) Turn this signal on when performing the count operation of the high-speed counter.
- (i) Present value read request (M9155/M9175)
 - 1) Turn this signal on when storing the present value of the counter into the present value storing special registers (D9155, D9156/D9165, D9166).
 - 2) The present value read request is made valid when it turns from off to on (leading edge).
- (j) External preset detection reset command (M9156/M9176)
 - 1) Turn this signal on when resetting (turning off) the external preset request detection signal (M9150/M9170).
 - 2) The external preset detection reset command is valid while it is on.
- (k) Ring counter setting (M9157/M9177)
 - 1) Turn this signal on when executing the ring counter function.(Refer to Section 5.4.5 for full information on the ring counter function.)

- (I) Counting speed selection (M9158/M9178)
 - 1) Turn this signal on when using the high-speed counter on the 10k side.
 - On the 10k side, pulses are counted in the following counting speed.
 - For 1-phase input: 10kpulses/s
 - For 2-phase input: 7kpulses/s
 - 2) When counting speed selection is off, the high-speed counter operates on the 60k side.
 - On the 60k side, pulses are counted in the following counting speed.
 - For 1-phase input: 60kpulses/s
 - For 2-phase input: 60kpulses/s
- (m) Counter function selection start command (M9159/M9179)
 - 1) Used for the following functions.
 - Latch counter function
 - Count disable function
 - 2) For the latch counter function, turn on this signal when the present value is stored into the latch count value storing special registers.

The counter function selection start command is made valid when it turns from off to on (leading edge).

- (For details of the latch counter function, refer to Section 5.4.7.)
- 3) For the count disable function, counting stops while the counter function selection start command is on.

Counting resumes when the counter function selection start command is switched off.

(For details of the count disable function, refer to Section 5.4.6.)

(2) Special registers

The special registers indicated in Table 5.11 are used for the high-speed counter function.

Device		Nama	Write	Bood	
CH.1	CH.2	Name	write	iteau	
D9152	D9162	D9162 Preset value (lower 16 bits)		Allowed	
D9153	D9163	Preset value (upper 8 bits)	Allowed	Allowed	
D9154	D9164	Pulse input mode selection	Allowed	Allowed	
D9155 D9165		Present value (lower 16 bits)	Inhibitod	Allowed	
D9156	D9166	Present value (upper 8 bits)	minipited	Alloweu	
D9157	D9167	Coincidence output set value (lower 16 bits)	Allowed	Allowed	
D9158	D9168	Coincidence output set value (upper 8 bits)	Allowed	Allowed	
D9159	D9169	Counter function selection	Allowed	Allowed	
D9160 D9170		Latch count value (lower 16 bits)	Inhibitod	Allowed	
D9161 D9171		Latch count value (upper 8 bits)	minulled	Allowed	
D9	172	Status	Inhibited	Allowed	

Table 5.11 Special Registers for the High-Speed Counter

- (a) Preset value (D9152, D9153/D9162, D9163)
 - 1) Set the preset values used for the following functions.
 - Preset function
 - Ring counter function
 - 2) The preset value may be set in the range 0 to 16777215.
- (b) Pulse input mode (D9154/D9164)
 - 1) Set the pulse input system with the following data.

Phase	Pulse Input System	Data Written
1	Multiplied by 1	0
1-phase	Multiplied by 2	8
	Multiplied by 1	2
2-phase	Multiplied by 2	10
	Multiplied by 4	18

- The high-speed counter function is not activated when the data written to the pulse input mode setting special register is other than any of the above values.
- At this time, bit 3 (b3) "CH.1"/bit 7 (b7) "CH.2" of D9172 turns to "1".
- The pulse input mode setting special registers turn to "0" when the A1FXCPU is switched on or reset.

5. FUNCTIONS

Pulse Input Mode Selection	Pulse Input System	Count Timing				
	1-phase multiplied by 1	Up counting	φA φB	Counts a pulse on leading edge of phase A Phase B and M9153 (M9173) are off.		
0		Down counting	φA	Counts a pulse on trailing edge of phase A. Phase B or M9153 (M9173) is on.		
9	1-phase	Up counting	φA	Counts a pulse on leading and trailing edges of phase A. Phase B and M9153 (M9173) are off.		
0	multiplied by 2	Down counting	φA	Counts a pulse on leading and trailing edges of phase A. Phase B or M9153 (M9173) is on.		
2	2-phase multiplied by 1	Up counting	φA	Counts a pulse on leading edge of phase A. Count increases in response to phase difference between phases A and B.		
2		Down counting	φA	Counts a pulse on trailing edge of phase A. Count decreases in response to phase difference between phases A and B.		
10	2-phase multiplied by 2	Up counting	φA φB	Counts a pulse on leading and trailing edges of phase A. Count increases in response to phase difference between phases A and B.		
10		Down counting	φΑ Ť ŢŢŢŢ φΒŢŢŢŢŢ	Counts a pulse on leading and trailing edges of phase A. Count decreases in response to phase difference between phases A and B.		
	2-phase multiplied by 4	Up counting		Counts a pulse on leading and trailing edges of phases A and B. Count increases in response to phase difference between phases A and B.		
18		Down counting		Counts a pulse on leading and trailing edges of phases A and B. Count decreases in response to phase difference between phases A and B.		

Table 5.12 Pulse Input Selection and Count Timing

- (c) Present value (D9155, D9156/D9165, D9166)
 - 1) The present value of the counter is stored when the present value read request (M9155/M9175) turns from off to on (leading edge).
 - 2) For up counting, when the count value exceeds 16777215, the present value turns to 0 and the count value stored starts with 0.

Example: 16777214→16777215→0→1→2

For down counting, when the count value exceeds 0, the present value turns to 16777215 and the count value stored starts with 16777215.

Example: 2→1→0→16777215→16777214

- (d) Coincidence output set value (D9157, D9158/D9167, D9168)
 - 1) Set the coincidence output values used for the following functions.
 - Coincidence output function
 - Ring counter function
 - 2) The coincidence output value may be set in the range 0 to 16777115.
- (e) Counter function selection (D9159/D9169)
 - Select the count disable function or latch counter function by setting the following data. (Refer to Section 5.4.6 for the count disable function and to Section 5.4.7 for the latch counter function.)

Counter Function	Set Value
Count disable function	0
Latch counter function	1

If the value set in counter function selection is other than 0 and 1, the high-speed counter function will not be activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

 The counter function selected with the counter function selection setting special register is made valid when the corresponding signals of the following signals turn from off to on (leading edge).

The counter function should be changed when the corresponding signals of the following signals are off.

- Counter function selection start command (M9159/M9169)
- A4/B4 of the Built-in function connector
- Count enable (M9154/M9174)
- (f) Latch counter value (D9160, D9161/D9170, D9171)
 - The present value of the counter is stored when the counter function selection start command (M9159/M9179) or A4/B4 of the general-purpose Built-in function connector turns from off to on (leading edge) in the latch counter function.

- (g) Status (D9172)
 - 1) The status of the high-speed counter function is stored into bits 0-7 (b0-b7).
 - Bit locations of D9172

• Application of each bit

CH.1	CH.2	Signal Name	Description
b0 b4 (Down counting	 "1" indicates down counting. When down count designation (M9153/M9163) is on in the 1-phase mode. A- and B-phase pulses are in the down count phase in the 2-phase mode.
B1	B1 b5 Enable		"1" indicates the count input acceptable status. (The count input acceptable status means that count enable (M9154/M9174) is on and count disable (M9159/ M9179 or A4/B4) is off)
b2	b6	Not used	_
b3	b7	Error	 "1" indicates that any of the following data is outside the setting range. Preset value (D9152, D9153/D9162, D9163) Coincidence output set value (D9157, D9158/D9167, D9168) Pulse input mode selection (D9154/D9164) Counter function selection (D9159/D9169) Data check is made on the leading edge of the count enable signal (M9154/M9174).

5.4.4 Preset function

The preset function is used to rewrite the high-speed counter function's present value into any value. (This new value is called the preset value.)

The preset function can be used to start pulse counting from the set value.

The preset function is available in two methods: "sequence program method" and "external control signal method".

(1) Example of using the preset function

The following example indicates that the production count is continued from the previous day in a system for counting the number of products.

In this system, each product carried on a conveyor is detected by a photoelectric switch and counted by the high-speed counter function.

- (a) Production amount of the previous day stored in the A1FXCPU is written to the preset area of the A1FXCPU for presetting.
- (b) Products are carried on the conveyor.
- (c) Production amount is counted in response to the pulse input from the photoelectric switch.
- (d) At the end of daily production, the count value in the present value storing special registers is stored into the word devices (e.g. D, W, R) in the A1FXCPU latch range.

(for storage of production amount)

(2) Presetting methods

There are two presetting methods: sequence program and external control signal methods.

- (a) Sequence program method
 - Turn on the preset command (M9152/M9172) in the sequence program to execute the preset function.

Write any value to the preset value storing special registers (D9152, D9153/D9162, D9163). (Setting range: 0 to 16777215)
 When the value set is outside the setting range, the high-speed counter

function is not activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

2) Turn the preset command (M9152/M9172) from off to on.

On the leading edge (OFF to ON) of the preset command, the present value in the present value storing special registers is changed to the preset value in the preset value storing special registers.

Preset can be executed independently of whether the count enable command (M9154/M9174) is on or off.

A voltage is applied to the "A5/B5" terminal of the general-purpose I/O connector to execute presetting. ON Count enable command OFF M9154(M9174) Input pulse for counting 1) Preset value setting special registers D9152, D9153 (D9162, D9163) 0 100 2) 3 Preset command A5 (B5) External preset command detection flag OFF M9150 (M1970) 5) \ON Reset executed by external preset OFF command detection reset command or by turning on M9156 (M9176) Present value storing special registers 0 65[¦] 66 67 100 101 123 124 100 101 1 2 D9155, D9156 (D9165, D9166)

(b) External control signal method

1) Write any value to the preset value storing special registers (D9152, D9153/D9162, D9163). (Setting range: 0 to 16777215)

When the value set is outside the setting range, the high-speed counter function is not activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

2) Apply a voltage to the "A5/B5" terminal of the I/O connector.

This causes the present value in the present value storing special registers to be changed to the preset value in the preset value storing special registers.

3) Preset can be executed independently of whether the count enable command (M9154/M9174) is on or off.

POINT

While the external preset command detection flag (M9150/M9170) is on 4), presetting cannot be performed if a voltage is applied to the A5/B5 terminal. When the external preset command detection flag is on, switch on the the external preset command detection reset command (M9156/M9176) (5) to switch off the external preset command detection flag, thereby enabling presetting.

5.4.5 Ring counter function

The ring counter function repeats counting between the preset value set by the ring counter command and the ring counter value.

The ring counter function can be used for control such as fixed-pitch feed.

- (1) Example of using the ring counter function
 - In a system where a sheet is cut to the specified size, set the ring counter value to roller-feed a sheet in fixed pitch and cut it to the given length.
 - (a) Set the preset and ring counter values to execute the ring counter function.
 - (b) The motor is run to rotate the rollers.
 - (c) The motor is stopped as soon as the given length of the sheet is fed by the rollers.
 - (d) The sheet is cut.
 - (e) The operations in steps (b) to (d) are repeated.

(2) Ring counter function operation

The operation of the ring counter function is shown below:

Set a preset value in the preset value setting special registers (D9152, D9153/D9162, D9163). (Setting range: 0 to 13777215)
 When the value set is outside the setting range, the high-speed counter

function is not activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

2) Set a ring count value in the coincidence output setting special registers (D9157, D9158/D9167, D9168). (Setting range: 0 to 13777215)When the value set is outside the setting range, the high-speed counter function is not activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

3) Switch on the preset command (M9152/M9172).

On the leading edge (OFF \rightarrow ON) of the preset command, the present value in the present value storing special registers is changed to the preset value in the preset value storing special registers.

Preset can be executed independently of whether the count enable command (M9154/M9174) is on or off.

4) Turn on the ring counter setting (M9157/M9177).

During execution of the ring counter function, the preset value and ring count value cannot be written.

- When the count value reaches the ring count value, the counter coincidence signal switches on to execute presetting.
 When the present value is read during execution of presetting, the ring count value or preset value is read.
- 6) The coincidence signal reset command is switched on to reset the count value coincidence signal.

Keep the count value coincidence signal (M9148/M9168) off until the second next presetting.

If the count value coincidence signal remains on, the next presetting is not performed.

(3) Counting range

The counting range of the ring counter function differs according to the relationships between the preset value, ring count value, present value and counting mode (up/down count).

(a) If (preset value)≦(present value)≦(ring count value)

The following operation is performed when the ring counter function is executed at the preset value of 0, ring count value of 2000, and present value of 500.

1) In up counting, the present value (0) turns to the preset value as soon as it is counted up to the ring count value (2000).

 In down counting, the present value turns to the maximum value (16777215) when it is counted down to the preset value (0).

Then, when the present value (0) is counted down from the maximum value to the ring count value, it turns to the preset value.

(b) If (preset value)≦(ring count value)≦(present value)

The following operation is performed when the ring counter function is executed at the preset value of 0, ring count value of 2000, and present value of 3000.

1) In up counting, the present value turns to the minimum value (0) when it is counted up to the maximum value (16777215).

Then, when the present value is counted up from the minimum value (2000) to the ring count value, it turns to the preset value (0).

2) In down counting, the present value turns to the preset value (0) when it is counted down to the ring counter value (2000).

coincidence output function cannot take place.

POINTS	
(1) During e	xecution of the ring counter function, the preset and ring count
values ca	nnot be written.
(2) During	execution of the ring counter function, any interrupt of the

5.4.6 Count disable function

The count disable function stops the counting operation while the count enable command (M9154/M9174) is on.

When the count disable function is used, the relationships between the count enable command, the counter function selection start command and the counter's present value are as shown below.

- 1) Count operation starts when the count enable command (M9154/M9174) switches on.
- Count operation stops when the counter function selection start command (M9159/M9179) switches on or when a voltage to the A4/B4 terminal of the Built-in function connector switches on.
- Count operation resumes when the counter function selection start command (M9159/M9179) switches off or when a voltage to the A4/B4 terminal of the Built-in function connector switches off.
- 4) Count operation stops when the count enable command (M9154/M9174) switches off.
- 5) Since the count enable command (M9154/M9174) is off, count operation remains stopped independently of whether the counter function selection start command (M9159/M9179) is on or off or whether the voltage to the A4/B4 terminal of the Built-in function connector is on or off.
- 6) If the count enable command (M9154/M9174) is switched on, count operation remains stopped since the counter function selection start command (M9159/M9179) is on or the voltage to the A4/B4 terminal of the Built-in function connector is on.
- Count operation resumes when the counter function selection start command (M9159/M9179) switches off or the voltage to the A4/B4 terminal of the Built-in function connector switches off.

5.4.7 Latch counter function

The latch counter function latches the present value at a time when an external signal is input.

When the latch counter function is used, the relationships between the counter's present value, counter function selection start command and latch count value storing special registers are as shown below.

 to 4) On the leading edge (OFF to ON) of the counter function selection command (M9159/M9179) or the Built-in function connector's A4/B4 terminal signal, the counter's present value is stored into the latch count value storing special registers (D9160, D9161/D9170, D9171).

The latch counter function can be executed independently of whether the count enable command (M9154/M9174) is on or off.

5.4.8 Coincidence output function

The coincidence output function turns on the counter coincidence special relay (M9148/M9168) or runs the interrupt program (I12/I13) when the preset value matches the present value of the counter.

(1) Example of using the function

In a machining line system, machining operations are performed in response to the corresponding coincidence outputs to turn out products as shown below. (a) Materials are carried on a belt conveyor.

- (b) Each material position is identified as the present count value determined by the pulse entered into the A1FXCPU.
- (c) When the material reaches the preset position, the counter coincidence special relay (M9148/M9168) is turned on or the interrupt program (I12/I13) is executed to perform the required operation.

(2) Coincidence output function operation

The operation of the coincidence output function is shown below.

 Set a coincidence output set value in the coincidence output setting special registers (D9157, D9158/D9167, D9168). (Setting range: 0 to 16777215) When the value set is outside the setting range, the high-speed counter function is not activated.

At this time, bit 3 (b3)/bit 7 (b7) of D9172 turns to "1".

When the count value reaches the coincidence output set value, the counter value less signal (M9149/M9169) switches off and the counter value coincidence signal (M9148/M9168) switches on.
 When there is an interrupt program (I12/I13), it is executed.

(When the ring counter function has been selected, the interrupt program cannot be executed.)

3) The coincidence signal reset signal (M9151/M9171) is switched on to reset the counter value coincidence signal (M9148/M9168).
 If the counter value coincidence signal remains on, the next coincident signal cannot be issued.

4) When the counter value becomes greater than the coincidence output set value, the counter value greater signal (M9147/M9167) switches on.

POINT

(1) The interrupt program (I12/I13) is not executed when (present value) = (coincidence output set value) from the beginning after power is switched on or the RESET switch is turned on.

112/113 is ready to be run after the present value has changed or the coincidence output set value has been changed.

5.5 External Interrupt Function

(1) External interrupt function

By switching X0 to X5 (A1 to A3, B1 to B3 terminals) of the A1FXCPU's Built-in function connector from OFF to ON or from ON to OFF, the corresponding interrupt programs (I0 to I5) can be run by the A1FXCPU.

5.5.1 Instructions for the external interrupt function

Observe the following instructions for the external interrupt function.

(1) Interrupt enable setting

Interrupt disable (DI) is activated when the A1FXCPU is switched on or reset by the RESET switch.

To run the interrupt program, enable interrupt by using the interrupt enable instruction (EI).

For the EI/DI instructions, refer to the ACPU Programming Manual (Common Instructions).

(2) Restrictions on PLS/PLF instructions

The device turned on by the PLS/PLF instruction in the interrupt program remains on until the same interrupt program is executed again.

(3) Status during interrupt program execution

During interrupt program execution, interrupt disable (DI) is activated. In the interrupt program, do not execute the interrupt enable/disable instruction (EI/DI).

(4) Use of timers in interrupt programs

Timers cannot be used in the interrupt programs.

If a timer is used in an interrupt program, its contact may be on though its coil is off or the present value may become equal to the set value.

(5) Interrupt program execution time

If the execution time of the interrupt program to be run is 8ms or longer, the present value of the timer may delay by the following period every time the interrupt program is run.

- 0 < t < 8 No delay
- 8 \leq t \leq 10 0 or 10ms depending on timing
- 20 \leq t \leq 30 10ms or 20ms depending on timing

Also, every time the interrupt program is executed, the scan time and constant scan time may increase.

5.5.2 Wiring for use of the external interrupt function

When using the external interrupt function, wire the interrupt inputs to X0-X5 (A1 to A3, B1 to B3 terminals) of the Built-in function connector.

Relationships between X0-X5 of the Built-in function connector and interrupt pointers are as indicated below.

- X0: Interrupt pointer I0
- X1: Interrupt pointer I1
- X2: Interrupt pointer I2
- X3: Interrupt pointer I3
- X4: Interrupt pointer I4
- X5: Interrupt pointer I5

5.5.3 Setting for executing the external interrupt function

Use the special relays to set the external interrupt function.

Table 5.13 indicates the special relays used to set the external interrupt function.

Table 5.13 Special Relays Used for Setting the External Interrupt Function

Number	Namo	Operation at ON/OFF		
Number	Nallie	OFF	ON	
M0110	Interrupt control during execution	FROM/TO instruction	Interrupt overrides	
1019119	of FROM/TO instruction	overrides interrupt.	FROM/TO instruction.	
M0120	Interrupt pointer 10 polarity actting	X0: Executed on	X0: Executed on	
1019120	Interrupt pointer 10 polarity setting	leading edge	trailing edge	
M0121	Interrupt pointer 11 polarity actting	X1: Executed on	X1: Executed on	
		leading edge	trailing edge	
M0122	Interrupt pointer 12 polarity actting	X2: Executed on	X2: Executed on	
1019122		leading edge	trailing edge	
M0102	123 Interrupt pointer I3 polarity setting	X3: Executed on	X3: Executed on	
1019123		leading edge	trailing edge	
M0124	Interrupt pointer 14 polority acting	X4: Executed on	X4: Executed on	
1019124	Interrupt pointer 14 polarity setting	leading edge	trailing edge	
M0125	Interrupt pointer IS polarity actting	X5: Executed on	X5: Executed on	
1019125	Interrupt pointer 15 polarity setting	leading edge	trailing edge	

(1) Interrupt control during execution of FROM/TO instruction

Set whether the interrupt program may be executed or not during execution of the FROM/TO instruction.

(a) When M9119 is OFF (FROM/TO instruction overrides interrupt) During execution of the FROM/TO instruction, interrupt is disabled and no interrupt program is executed if an interrupt occurs.

For an interrupt occurring during execution of the FROM/TO instruction, the interrupt program corresponding to that interrupt is executed after completion of the FROM/TO instruction execution.

If M9119 is off, the FROM/TO instruction can be used in the interrupt program.

(b) When M9119 is ON (Interrupt overrides FROM/TO instruction)

If an interrupt occurs during execution of the FROM/TO instruction, the execution of the FROM/TO instruction is suspended and the interrupt program corresponding to that interrupt is executed.

If M9119 is on, the FROM/TO instruction cannot be used in the interrupt program.

- (2) Interrupt pointer In polarity setting (M9120 to M9125)
 - (a) To be turned on when running an interrupt program on the trailing edge of the corresponding interrupt input.

For the polarity setting of the interrupt pointer, the leading or trailing edge can be specified with a single interrupt pointer.

(b) When running an interrupt program on the leading and trailing edges, enter one interrupt signal into two places.

For example, wire as shown below when specifying interrupt pointer I0 for the leading edge and I1 for the trailing edge.

Interrupt input

Also write interrupt programs as shown below in the ladder mode of the peripheral.

5.5.4 Interrupt processing timing

When an external interrupt signal comes in, the interrupt program corresponding to that interrupt signal is executed.

There is a time delay between entry of the interrupt signal and actual execution of the interrupt program.

When another interrupt program is being executed, the next program waits until the end of the currently run program.

Delay time between external interrupt signal entry and interrupt program execution will be described below.

(1) Ordinary interrupt input delay

(a) The following processing is performed between interrupt signal entry and interrupt program execution.

A: Time between interrupt input ON and interrupt program execution

B: Post-processing time of interrupt program

* Indicates the interrupt disable processing time and the interrupt program waits for that period.

ltem	During Ordinary Sequence Execution	During Execution of Any of I12, I13 and I29 to I31	General Data Processing of Simple Link Function	Interrupt from Peripheral
Time marked *	0.5ms	1ms + (execution time of interrupt program corre- sponding to any of I12, I13 and I29 to I31)	1.5ms	0.65ms (when moni- toring device 128 bytes)

The maximum execution time is listed below.

When one of the above processings takes place during execution of the other, the time marked * is the sum of individual periods. For example, when there is an interrupt input during general data processing, the time marked * is 0.5ms + 1.5ms.

(b) Minimum intervals of consecutive identical interrupt inputs

The intervals of identical interrupts executed consecutively should be not shorter than the sum of the time between when the interrupt input signal turns on and when the corresponding program is run (t1) and the execution time of the interrupt program (t2). (Times t1 + t2 or longer)

If interrupt signals corresponding to the interrupt program being executed come in, their interrupt requests are ignored.

t1: Time from interrupt input to interrupt program execution t2: Interrupt program execution time

(c) Pulse width of interrupt input signal

It takes 0.5ms for the interrupt input of the A1FXCPU to turn from OFF to ON. Hence, the interrupt input may not be accepted if the pulse width of the interrupt input signal is less than 0.5ms.

- (d) Interrupt input priority
 - The interrupt priority is as follows.

Priority	Interrupt Pointer	upt Pointer Name													
High	igh 10 External interrupt input (X0) ↑ 11 External interrupt input (X1)														
															
	12	External interrupt input (X2)													
	13	External interrupt input (X3)													
	14	External interrupt input (X4)													
	15	External interrupt input (X5)													
	112	Coincidence output of high-speed counter function (CH.1)													
	113	Coincidence output of high-speed counter function (CH.2)													
	131	Time interrupt (10ms)													
l ↓	130	Time interrupt (20ms)													
Low	129	Time interrupt (40ms)													

- When one interrupt occurs during interrupt program execution, the interrupt program corresponding to the next interrupt is executed on completion of that interrupt program execution.
- When two or more interrupts occur during interrupt program execution, the interrupt program corresponding to the highest-priority interrupt is executed on completion of that interrupt program execution.
- For example, when interrupt inputs corresponding to 15 and 12 take place during execution of the 14 interrupt program, 12 interrupt is executed on a priority basis.

6. I/O NUMBER ASSIGNMENT

This chapter describes I/O number assignment made to transfer data between the A1FXCPU and extension modules/extension blocks.

6.1 What Are I/O Numbers?

"Inputs (X)" are used to import data from the extension modules/extension blocks to the A1FXCPU, and "outputs (Y)" are used to output data from the A1FXCPU to the extension modules/extension blocks.

I/O numbers are addresses of the inputs/outputs built in the A1FXCPU and the extension modules/extension blocks.

The number of input/output points that may be controlled by the A1FXCPU is 242 (built in A1FXCPU: 14 input points/4 output points, extension modules/extension blocks: 224 points).

However, one special module or special block occupies 8 points. Hence, when special modules/special blocks are used, the number of points available for extension modules/extension blocks is found by:

242 points $-8 \times$ (number of special modules/special blocks)

• The A1FXCPU contains 14 input points and 4 output points and occupies X0 to XD as inputs and Y10 to Y13 as outputs.

Therefore, extension modules/extension blocks use X/Y20 to X/YFF.

REMARKS

The number of I/O device points indicates the number of device points sfor which programming can be done with inputs (X) and outputs (Y).

6.2 I/O Number Assignment

When switched on or reset by the RUN/STOP switch, the A1FXCPU makes the following I/O number assignment.

When writing a sequence program, specify the I/O numbers assigned in accordance with the following items.

- (1) I/O number assignment

 - (b) I/O numbers are assigned in hexadecimal.
 - (c) Inputs/outputs start at X/Yn0.

The I/O numbers of each module are indicated below.

Number of I/O Points of Extension Module/Extension Block	I/O Numbers									
8 input points	Xn0 to Xn7 (Xn8 to XnF must not be used)									
8 output points	Yn0 to Yn7 (Yn8 to YnF are handled as internal relays) ^{*1}									
A input pointe A output pointe	Xn0 to Xn3 (Xn4 to XnF must not be used)									
	Y[n+1]0 to Y[n+1]3 (Y[n+1]4 to Y[n+1]F are handled as internal relays) *1									
16 input points	Xn0 to XnF									
16 output points	Yn0 to YnF									
9 input pointe 9 output pointe	Xn0 to Xn7 (Xn8 to XnF must not be used)									
8 input points, 8 output points	Y[n+1]0 to Y[n+1]7 (Y[n+1]8 to Y[n+1]F are handled as internal relays) *1									
16 input points, 16 output points	Xn0 to XnF, Y[n+1]0 to Y[n+1]7									
	Xn0 to XnF, X[n+2]0 to X[n+2]7									
24 input points, 24 output points	Y[n+1]0 to Y[n+1]F, Y[n+3]0 to Y[n+3]7 (Y[n+3]8 to Y[n+3]F are handled as									
	internal relays) ¹									

*1: Can be switched on/off in the sequence program but cannot be provided to the outside.

For example, I/O numbers are as follows when an extension module/extension block is connected on the right-hand side of the A1FXCPU. I/O numbers in parentheses are occupied by each extension module/extension block.

6 - 2

(d) One special module/special block occupies 8 points but does not use I/O numbers.

Hence, when special modules/special blocks are used, skip them over when setting the I/O numbers.

REMARKS

The LED indication of the extension module/extension block is in octal. When using the A1FXCPU to control the extension module/extension block, read the octal of the LED indication as hexadecimal.

Indication of extension module/extension block

Value read as hexadecimal

When a 48-point extension module (24 input points, 24 output points) is connected next to the A1FXCPU

7. COMMUNICATION WITH SPECIAL MODULE/SPECIAL BLOCK

7. COMMUNICATION WITH SPECIAL MODULE/SPECIAL BLOCK

This chapter explains how the A1FXCPU reads data from the special module/special block and write data to the special module/special block.

(1) Special module/special block

The special module/special block is a module designed for the A1FXCPU to handle analog values, high-speed pulses, etc. which cannot be handled by the extension module/extension block.

The special module has memory (buffer memory) which stores data imported from external equipment and data to be output to the external equipment.

(2) Read/write of data from/to A1FXCPU

The FROM/TO instruction is used by the A1FXCPU to read/write data from/to the special module/special block.

- Execution of the FROM instruction allows reading of the data stored in the buffer memory of the special module/special block.
- Execution of the TO instruction allows writing of data to the buffer memory of the special module/special block.

POINT

Note that a frequent execution of FROM/TO instructions on the target special module/special block may not be processed normally. When executing the FROM/TO instructions on the special module/special block, set the special module/special block timer or a constant scan with the FROM/TO instruction timings.

MELSEC-A

7.1 Reading 1- or 2-word data from the special module/special block

..... FROM, FROMP, DFRO, DFROP

\setminus		Available Device															u									
\setminus	Bit device							Word device								Cons- tant		Pointer		Level	Digit ificatio	ubset	xapr	Carry Flag	Error Flag	
	x	Y	м	L	s	в	F	т	С	D	w	R	A0	A1	z	v	к	н	Ρ	I	N	Spec	١S	IJ	M9012	M9010 M9011
n1																	0	0								
n2																	0	0				*		0		0
D		0	0	0		0	0	0	0	0	0	0												0		0
n3																	0	0								

*: The digit specification of the FROM(P) instruction is K1 to K4. The digit specification of the DFRO(P) instruction is K1 to K8.

Functions

FROM

Reads n3-word data at the addresses beginning with the one specified at n2 in the buffer memory of the special module/special block specified at n1 and writes that data into the devices number starting from the one specified at ^(D).

MELSEC-A

DFRO

Reads $(2 \times n3)$ -word data from the address beginning with the one specified at n2 in the buffer memory of the special module/special block specified at n1 and writes that data into the devices number starting from the one specified at D.

Execution Conditions

The FROM and DFRO instructions are executed every scan while the read command is ON.

The FROMP and DFROP instructions are executed only once on the leading edge (OFF \rightarrow ON) of the read command.

Operation Error

Any of the following conditions will result in an operation error and the error flag switch on.

- The special module/special block cannot be accessed.
- The value specified at n1 is other than 0 to 7.
- n3-point data from the device specified at D exceeds the specified device range.

REMARKS

In n1, set the position of the special module/special block counted from the A1FXCPU.

Program Examples

FROM

The following program reads 1-word data from K2000 of the buffer memory of the special module/special block located in the second position from the A1FXCPU to D0 when X20 is switched on.

MELSEC-A

DFRO

The following program reads 2-word data from K2000 of the buffer memory of the special module/special block located in the second position from the A1FXCPU to D0 and D1 when X20 is switched on.

REMARKS

During execution of the FROM/DFRO/TO/DTO instruction, interrupt program execution control can be exercised by M9119.

• When M9119 is off (FROM/TO instruction overrides interrupt)

While the FROM/DFRO/TO/DTO instruction is being executed, interrupt is disabled and an interrupt program is not run if an interrupt occurs.

For any interrupt that occurred during execution of the FROM/DFRO/TO/DTO instruction, the corresponding interrupt program is run after completion of the FROM/DFRO/TO/DTO instruction execution.

When M9119 is off, the FROM/DFRO/TO/DTO instruction can be used in an interrupt program.

When M9119 is on (interrupt overrides FROM/TO instruction)
 When an interrupt occurs during execution of the FROM/DFRO/TO/DTO instruction, the FROM/DFRO/TO/DTO instruction execution is suspended and the corresponding interrupt program is run.

When M9119 is turned on, the FROM/DFRO/TO/DTO instruction cannot be used in an interrupt program.

• Relevant interrupts are I0 to I5, I12, I13 and I29 to I31.

MELSEC-A

7.2 Writing 1- or 2-word data to the special module/special block TO, TOP, DTO, DTOP

\setminus	Available Device												u													
\backslash			Bit	dev	ice						Wo	rd d	evic	e			Co ta	ns- nt	Poi	nter	Level	Digit Sificatio	ubset	харг	Carry Flag	Error Flag
	x	Y	м	L	s	в	F	т	С	D	w	R	A0	A1	z	v	κ	н	Ρ	I	N	Spec	S	I	M9012	M9010 M9011
n1																	0	0								
n2																	0	0				*		~		0
S		0	0	0	×	0	0	0	0	0	0	0					0	0						0		0
n3																	0	0								

*: The digit specification of the TO instruction is K1 to K4. The digit specification of the DTO instruction is K1 to K8. When K or H is specified at (s), the setting range is H0 to HFFFF or K-32768 to K32767.

Functions

ТО

Writes n3-point data in the devices number starting from the one specified at s to the addresses beginning with the one specified at n2 in the buffer memory of the special module/special block specified at n1.

MELSEC-A

DTO

Writes $(2 \times n3)$ -point data in the devices number starting from the one specified at (s) to the addresses beginning with the one specified at n2 in the buffer memory of the special module/special block specified at n1.

Execution Conditions

The TO and DTO instructions are executed every scan while the write command is ON.

The TOP and TOP instructions are executed only once on the leading edge (OFF \rightarrow ON) of the write command.

Operation Error

Any of the following conditions will result in an operation error and the error flag switch on.

- The special module/special block cannot be accessed.
- The value specified at n1 is other than 0 to 7.
- n3-point data from the device specified at (s) exceeds the specified device range.

REMARKS

In n1, set the position of the special module/special block counted from the A1FXCPU.

Program Examples

ТО

The following program writes 4603H to K0 of the buffer memory of the special module/special block located in the second position from the A1FXCPU when X20 is switched on.

MELSEC-A

DTO

The following program writes 2-point data starting from the one specified at D0 to K0 of the buffer memory of the special module/special block located in the second position from the A1FXCPU when X20 is switched on.

REMARKS

During execution of the FROM/DFRO/TO/DTO instruction, interrupt program execution control can be exercised by M9119.

When M9119 is off (FROM/TO instruction overrides interrupt)

While the FROM/DFRO/TO/DTO instruction is being executed, interrupt is disabled and an interrupt program is not run if an interrupt occurs.

For any interrupt that occurred during execution of the FROM/DFRO/TO/DTO instruction, the corresponding interrupt program is run after completion of the FROM/DFRO/TO/DTO instruction execution.

When M9119 is off, the FROM/DFRO/TO/DTO instruction can be used in an interrupt program.

 When M9119 is on (interrupt overrides FROM/TO instruction) When an interrupt occurs during execution of the FROM/DFRO/TO/DTO instruction, the FROM/DFRO/TO/DTO instruction execution is suspended and the corresponding interrupt program is run.

When M9119 is turned on, the FROM/DFRO/TO/DTO instruction cannot be used in an interrupt program.

• Relevant interrupts are I0 to I5, I12, I13 and I29 to I31.

If an error occurs when the PLC power is on or while it is on, the self-diagnostic function causes the error to be displayed or the error code (including the step number) to be stored in the special register.

Table 8.1 indicates how to read the error code at error occurrence, error causes, and how to take action. Take proper action to remove the error cause.

Error messages, error codes, definitions and causes of errors, and corrective actions are given below.

Error Message	Content of Special Register D9008 (BIN Value)	CPU Status	Error and Cause	Action			
"INSTRUCT CODE ERR."	10	Stop	 An unrecognized instruction code is included in the program. (1) The program including an unrecognized instruction code was written from the peripheral. (2) Memory contents changed for some reason, causing the unrecognized instruction code to be included. (3) Though the DIP switch is set to E²PROM, the program is not written to E²PROM. 	 (1) Read the error step with the peripheral and correct the program in that step. (2) Write the program to E²PROM. (3) Write the program from the peripheral to E²PROM. 			
"PARAMETER ERROR"	11	Stop	Parameter data in CPU memory changed due to noise.	Read the parameter data of CPU memory with the peripheral, check and correct the data, and write them to memory again.			
"MISSING END INS."	12	Stop	There is no END (FEND) instruction in the program.	Write END at the end of the program.			
"CAN'T EXECUTE (P)"	13	Stop	 No jump destination or several destinations specified for the CJ, SCJ, CALL(P) or JMP instruction. The RET instruction has been executed with no corresponding CALL(P) instruction. The CJ, SCJ, CALL(P) or JMP instruction has been executed with jump destination located after the END instruction. The number of FOR instructions does not match that of NEXT instructions. The JMP instruction is provided between FOR and NEXT to exit from FOR-NEXT. Before the RET instruction is executed, the JMP instruction has been executed to exit from the subroutine. The JMP instruction has been executed to jump into the step between FOR and NEXT or into the subroutine. 	Read the error step with the peripheral and correct the program in that step. (Correct by inserting a jump destination or reducing destinations to one.)			

Table 8.1 Error Code List

Error Message	Content of Special Register D9008 (BIN Value)	CPU Status	Error and Cause	Action			
"CHK FORMAT ERR."	14	Stop	 (1) The CHK instruction ladder block contains an instruction (including NOP) other than LD X□, LDI X□, AND X□ and ANI X□. (2) There are several CHK instructions. (3) There are more than 150 contacts in the CHK instruction ladder block. (4) The X device number in the CHK instruction ladder block. (4) The X device number in the CHK instruction ladder block is greater than X1FE. (5) There is no following ladder block before the CHK instruction ladder block is greater than X1FE. (6) The device (number) of D1 in the CHK D1 D2 instruction is not the same as that of the contact before the CJ⊖ instruction. (7) Pointer P254 is not provided at the beginning of the CHK instruction ladder block. P254 H H CHK D1 D2 	(1) Check for any of (1) to (7) error causes in the CHK instruction ladder block. If any, correct the fault with the peripheral and restart operation.			
"CAN'T EXECUTE (I)"	15	Stop	 There are several interrupt pointer I numbers. No IRET instruction in the interrupt program. IRET instruction used outside the interrupt program. 	 Create a corresponding number of interrupt programs or remove the same I numbers. Check for IRET instruction in the interrupt program. If not found, write the IRET instruction. Check for the IRET instruction Check for the IRET instruction outside the interrupt program. If found, delete the IRET instruction. 			
"RAM ERROR"	20	Stop	(1) The CPU could not access the data memory area of the CPU.	CPU hardware fault, contact your sales representative.			
"OPE. CIRCUIT ERR."	21	Stop	 The sequence processing operation circuit in the CPU does not operate properly. 				
"WDT ERROR"	22	Stop	 Scan time exceeds watchdog error monitor time. (1) User program scan time has increased. (2) Instantaneous power failure during program scan has caused scan time to increase. 	 Calculate or check user program scan time and reduce it using CJ instruction, etc. Check for instantaneous power failure by monitoring special register D9005 with the peripheral. If the value is other than 0, power supply voltage is instable. Check the power supply and reduce voltage fluctuation. 			

Table 8.1 Error Code List (Continued)

Error Message	Content of Special Register D9008 (BIN Value)	CPU Status	Error and Cause	Action		
"END NOT EXECUTE"	24	Stop	 When executed, the END instruction was read as another instruction code due to noise, etc. The END instruction has changed into another instruction code for some reason. 	(1) Reset the CPU and run it again. If the error still persists, it is a CPU hardware fault. Consult your sales representative.		
"WDT ERROR"	25	Stop	The CJ instruction or like caused the sequence program to enter a loop, making the END instruction inexecutable.	Check for programs which may go into an endless loop and correct if any.		
"UNIT VERIFY ERR."	31	Stop (Run)	 I/O data different from those at power-on. (1) The connection cable of extension module, extension block, special module or special block unplugged. 	 Monitor the special register D9116 (in blocks of 16 points) with the peripheral to check for "1" in the bit corresponding to the extension module, extension block, special module or special block resulting in verify error. Change the corresponding module or block. Monitor the special register D9116 (in blocks of modules) with the peripheral to check for "1" in the bit corresponding to the extension module, extension block, special module or special block resulting in verify error. Change the corresponding module or block. When the current module may be kept connected, reset the CPU with the RESET switch. 		
"FUSE BREAK OFF"	32	Run (Stop)	(1) Power of the extension module not on.	 The peripheral may also be used to check whether the power of the extension module is off or not. Monitor the special registers D9100-D9101 to check for "1" in the bit corresponding to the extension module/special extension module resulting in power-off. Check whether the power of the extension module/special extension module/special extension module is on or off. 		
"CONTROL-BUS ERR."	40	Stop	FROM and/or TO instruction not executed. (1) Special module control bus error.	 Special module, CPU module or extension cable hardware fault. Change the module and check the faulty module. Consult your sales representative. 		

Table 8.1 Error Code List (Continued)

Error Message	Content of Special Register D9008 (BIN Value)	CPU Status	Error and Cause	Action
"SP. UNIT ERROR"	46	Stop (Run)	 Access to where no special module exists (FROM/TO instruction executed). Extension module/special block not supplied with power. 	 Read the error step with the peripheral, and check and correct the FROM/TO instruction in that step with the peripheral. Switch on power of special module. Switch on power of extension module which supplies power to special block.
"LINK PARA. ERROR"	47	Run	(1) Link setting program setting data is outside setting range.(LINK RUN LED flickers)	(1) Correct the link setting program.
"OPERATION ERROR"	50	Run (Stop)	 BCD conversion result exceeded specified range (9999 or 99999999). Setting in excess of specified device range made operation inexecutable. File registers used in program without file register capacity being set. 	(1) Read the error step with the peripheral, and check and correct the program in that step. (Check device setting range, BCD conversion value, etc.)
"MAIN CPU DOWN"	60	Stop	 Interrupt (INT) instruction used in microcomputer program. CPU misoperated due to noise, etc. CPU hardware fault. 	 Remove INT instruction as it cannot be used in microcomputer program. Eliminate noise. Change CPU.
"BATTERY ERROR"	70	Run	 Battery voltage dropped below specified level. Battery not connected. 	 Change battery. Connect battery when built-in RAM memory or power failure compensation is used.

Table 8.1 Error Code List (Continued)

APPENDICES

Appendix 1 General Specifications

Table 1.1 lists the general specifications of the A1FXCPU used independently, and Table 1.2 lists those of the A1FXCPU used with the FX series.

Table 1.1 General S	pecifications	(of the <i>l</i>	A1FXCPU	Used Inde	pendently)
			-		

ltem	Specifications										
Operating ambient temperature	0 to 55°C										
Storage ambient temperature	–20 to 75°C										
Operating ambient humidity	10 to 90%RH, nor	n-condensing									
Storage ambient humidity	10 to 90%RH, nor	0 to 90%RH, non-condensing									
			Frequency	Acceleration	Amplitude	Sweep Count					
	Conforms to	In case of	10 to 57Hz	_	0.075mm	10 times in a sh					
Vibration resistance	JIS B 3502 and	vibration	57 to 150Hz	9.8m/s ²	_	of X, Y and Z					
	IEC 1131-2.	In case of	10 to 57Hz	_	0.035mm	directions					
		vibration	57 to 150Hz	4.9m/s ²	_	(IOI OU IIIIIIULES)					
Shock resistance	Conforms to JIS E	3 3502 and IEC	1131-2 (147m/s	² , 3 times in eac	h of X, Y and	Z directions).					
Operating atmosphere	No corrosive gas										
Operating altitude	2000m (610feet) r	nax.									
Installation site	Inside control box										
Overvoltage category*1	II or less										
Contamination level*2	2 or less										
Noise durability	By noise simulato	r of 1,500Vp-p n	oise voltage, 1	μ s noise width a	nd 25 to 60Hz	noise frequency					
Dielectric withstand voltage	1,500VAC for 1 m	inute across AC	external termin	als and ground							
	500VAC for 1 min	ute across DC e	external terminal	s and ground							
Insulation resistance $10M \Omega$ or larger for 1 minute by 500VDC insulation resistance tester across AC extern and ground											
Grounding	Always ground the	e terminal to the	protective groui	nd connector							

*1: Indicates the element in the distribution system between the public electricity grid and the mechanical equipment inside the premises that the relevant device is assumed to be connected to. Category II applies to devices such as those that draw their power supply from fixed installations. The surge voltage withstand capability of devices with ratings up to 300V is 2,500V.

*2: This index gives a measure of the incidence of conductive materials in the environment in which the device is used.

A contamination level of 2 indicates an environment in which there is only contamination by non-conducting materials, but due to occasional condensation, conductivity may occur.

The specifications in the following table apply when the A1FXCPU is used with the FX series.

However, when the A1FXCPU is mounted on an enclosure, the vibration resistance should be as in the A1FXCPU range (Table 1.1).

When the A1FXCPU is mounted on the DIN rail, the vibration resistance should be as in the FX series range (Table 1.2).

 Table 1.2 General Specifications (of the A1FXCPU Used with the FX Series)

Item	Specifications						
Ambient temperature							
Relative humidity	35 to 85%RH (non-condensing) Operating						
Vibratian registeres	Conforms to JIS C 0911. 10 to 55Hz, 0.5mm (max. 2G)*1, in each of three axial						
Vibration resistance	directions for 2 hours.						
Shock resistance	Conforms to JIS C 0912. 10G, 3 times in each of three	ch of three axial directions.					
Naine durchilitur	By noise simulator of 1,000Vp-p noise voltage, 1 μ s noise width and 30 to 100Hz noise						
Noise durability	frequency						
Dielectric withstand voltage	1,500VAC for 1 minute						
Insulation resistance	5M Ω or larger by 500VDC insulation resistance tester	Across all terminals and ground					
Grounding	Always ground the terminal to the protective ground connector (no joint grounding with						
Grounding	power control system)						
Operating atmosphere	No corrosive and combustible gases and little conducti	ve dirt and dust.					

*1: 0.5G when mounted to DIN rail

Appendix 2 Outline Dimension Drawings

Appendix 2.1 A1FXCPU module

Unit: mm (inch)

Appendix 3 Available Instructions and Processing Time

Appendix 3.1 Sequence instructions

Classification	Instruction		Conditi	Processing Time ($^{\mu}$ s)					
Contact instruction	LD LDI AND ANI OR ORI		X,Y,M	,L,B,F,T,C			0.25		
ANB ORB Association instruction MPS MRD MPP							0.25		
		M(C	Y,L,B Other than special M)	Ur (OFF→) (OFF→)	nchanged OFF, ON \rightarrow Changed ON, ON \rightarrow C	ON)	0.25		
		Spe	cial M	V - ·	-,	,	7.2		
		_	Unexecuted				12.3		
		F	Executed		52.2				
			Instruction execution time				0.25		
	0.17			Unexecuted			0		
Output Instruction	001	Т	Processing time		After time	-out	20.0		
			at END	Executed	Addod	К	22.0		
					Audeu	D	24.0		
			Instruction execution	on time			0.25		
				Unexecuted	d		0		
		C	Processing time		Uncounte	d	0		
			at FND	Executed	After count-out		0		
					Counted	К	12.0		
					Counted	D	15.2		

Classification	Instruction		Condit	Processing Time (μ s)				
			Unexecuted		-			
		Y	Executed	Unchanged (ON→ON)	0.1	25		
			Executed	Changed (OFF→ON)				
			Unexecuted	1	-			
	SET	M,L,B	Executed	Unchanged (ON→ON)	0.:	25		
	0L1		LYCOULCO	Changed (OFF→ON)				
		Special M	Unexecuted	1	1	.0		
		В	Executed		6	.2		
		F	Unexecuted	ł	1	.0		
		'	Executed		46	5.1		
			Unexecuted	<u>k</u>				
		Y	Executed	Unchanged (OFF→OFF)	0.3	32		
			Executed	Changed (ON→OFF)]			
			Unexecuted	1				
		M,L,B	Executed	Unchanged (OFF→OFF)	0.32			
			Executed	Changed (ON→OFF)				
		Special M	Unexecuted	ł	1	.0		
		В	Executed		6	.2		
Output instruction		F	Unexecuted	ł	1	.0		
	RST		Evecuted		$OFF \rightarrow OFF$	$ON \rightarrow OFF$		
			Executed		8.5	57.1		
		T,C	Unexecuted	ł	1	.0		
			Evecuted		OFF→OFF	$ON \rightarrow OFF$		
			Executed		8.3	9.0		
		D,W	Unexecuted	t	1.0			
		V,Z	Executed		5	.2		
		D	Unexecuted	1	1	.0		
		ĸ	Executed		6	.7		
			Unexecuted	1	11	.7		
		Y	Everyted	On	11	.6		
	PLS		Executed	Off	11	.7		
	PLF		Unexecuted	1	11	.7		
		M,L		On	11	.6		
		B,F	Executed	Off	11	.7		
	СНК	Bit inversion			23.2			

Classifi	cation	Instruction		Condition (Device)	Processing Time (μ s)
			V	Unexecuted	1.0
Shift instruction	~	SFT	T	Executed	8.1
Shiit Instructio	UT	SFTP	M,L	Unexecuted	1.0
			B,F	Executed	8.1
			V	Unexecuted	8.8
Maatanaaata	.1	MC	ř	Executed	8.0
Master contro	DI	MC	M,L	Unexecuted	8.8
Instruction			B,F	Executed	8.0
		MCR			5.2
End instructio	FEND		When M90	84 is on	466.6
Ena instructio	n	END	When M90	84 is off	451.3
	Stop	STOP			
Other instructions	No operation	NOP			0.25
	Line feed*	NOPLF	0.25		

*: Line feed processing is performed when printer output is provided.

Appendix 3.2 Basic instructions

Classification				•	5	3	D		Processing	
Cla	assification		Instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(^µ s)	
			LD=		D	0	D	1	14.7	
		16 bits	AND=		D	0	D	1	12.9	
			OR=		D	1	D	0	13.7	
	=		LDD=		D	0	D	2	27.5	
		32 bits	ANDD=		D	0	D2		25.3	
			ORD=		D	0	D	2	27.3	
			LD < >		D0		D1		14.5	
		16 bits	AND <>		D	0	D	1	12.3	
			OR < >		D0		D	1	13.1	
	<>		LDD <>		D	0	D	2	26.9	
		32 bits	ANDD < >		D	0	D	2	26.7	
			ORD <>	<>		0	D	2	25.9	
			LD >		D	0	D1		14.3	
		16 bits	AND >		D	0	D1		12.7	
			OR >		D	0	D	1	12.9	
	>		LDD >		D	0	D	2	27.5	
		32 bits	ANDD >		D	0	D	2	27.1	
Comparison			ORD >		D	0	D	2	26.5	
instruction			LD >=		D	0	D1		14.9	
		16 bits	AND >=		D0		D1		12.5	
	>=		OR >=		D0		D1		14.1	
		32 bits	LDD >=		D	0	D	2	28.3	
			ANDD >=		D0		D2		26.1	
			ORD >=		D0		D2		28.3	
			LD <		D	0	D	1	14.7	
		16 bits	AND <		D	0	D1		12.5	
			OR <		D	0	D1		13.1	
	<		LDD <		D	0	D	2	27.3	
		32 bits	ANDD <		D	0	D	2	27.1	
			ORD <		D	0	D	2	26.5	
			LD <=		D	0	D	1	14.9	
		16 bits	AND <=		D	0	D	1	12.3	
			OR <=		D	0	D1		13.9	
	<-		LDD <=		D	0	D2		28.5	
		32 bits	ANDD <=		D	0	D	2	26.3	
			ORD <=		D	0	D	2	28.3	

	Classification			Condition		S	D		Processing
	assincation		instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time($^{\mu}$ s)
		16 hito	+		D	00	D	1	8.7
		TO DILS	+P		D	00	D	1	8.6
		22 hito	D+		D	00	D	2	13.7
	Addition	SZ DIIS	D+P		C	0	D	2	13.6
	Addition	16 hito	+		D0	D1	D	2	15.3
		TO DILS	+P		D0	D1	D2		15.2
		22 hita	D+		D0	D2	D	4	19.3
		SZ DIIS	D+P		D0	D2	D	4	19.4
		16 hito	-		D	00	D	1	8.7
		10 510	-P		C	00	D	1	8.6
	Subtraction	32 bits	D-		D	00	D	2	13.7
			D-P		C	D0		2	13.6
		16 bite	-		D0	D1	D	2	15.7
		TO DILS	-P		D0	D1	D2		15.8
RIN arithmatic		22 hite	D-		D0	D2	D	4	20.3
		02 010	D-P		D0	D2	D4		20.4
instruction	Multiplication	16 bits	*		D0	D1	D	2	16.5
			*P		D0	D1	D	2	16.6
		22 hita	D*		D0	D2	D	4	73.7
		52 0113	D*P		D0	D2	D	4	73.6
		16 hite	1		D0	K1	D	2	17.7
	Division	10 0113	/P		D0	K1	D	2	17.4
	DIVISION	22 hite	D/		D0	K1	D	4	80.1
		52 DIIS	D/P		D0	K1	D	4	80.2
		16 bite	INC				D	0	5.7
	+1		INCP				D	1	5.4
	- T I	22 hite	DINC				D	0	8.1
		52 DILS	DINCP				D	0	7.9
		16 bite	DEC				D	0	6.1
	4		DECP				D	0	5.9
	-1	22 hita	DDEC				D	0	8.1
		SZ DIIS	DDECP				D	0	8.1

Cla	acification		Instruction Condit			S	D		Processing
Cla	assincation		instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(μ s)
		16 hita	B+		D	00	D	1	25.3
		TO DILS	B+P		C	00	D	1	25.2
			DB+		D	00	D2	2	35.2
	Addition	32 DIIS	DB+P		D	00	D2	2	35.4
	Addition		B+		D0	D1	D2	2	26.5
		TO DILS	B+P		D0	D1	D2	2	26.6
			DB+		D0	D2	D4	1	37.7
		32 DITS	DB+P		D0	D2	D4	1	37.5
		16 bits	B-		D	00	D	1	24.9
			B-P		D	00	D	1	24.9
	Subtraction	32 bits	DB-		D	00	D2	2	35.3
BCD arithmetic			DB-P		D0		D2		35.1
operation instruction	Subtraction	10 hite	B-		D0	D1	D2		27.3
		16 DIts	B-P		D0	D1	D2	2	27.1
		00 hite	DB-		D0	D2	D4	1	38.1
		JZ DILS	DB-P		D0	D2	D4		37.9
			B*		D0	D1	D2	2	60.1
	Multiplication	TO DILS	B*P		D0	D1	D2	2	59.7
		00111	DB*		D0	D2	D4	1	184.3
		32 DIIS	DB*P		D0	D2	D4	1	184.3
		10 hite	B/		D0	K1	D	1	46.2
	Division	TO DILS	B/P		D0	K1	D2	2	46.1
	DIVISION	22 hita	DB/		D0	K1	D2	2	185.1
		32 DIIS	DB/P		D0	K1	D4	1	184.5
			BCD		D	00	D	1	16.3
		TO DILS	BCDP		D	00	D	1	16.7
	ым→рср	22 hita	DBCD		D	00	D2	2	44.3
BCD to BIN		32 DIIS	DBCDP		D	00	D2		44.5
		16 hita	BIN		C	00	D1		15.7
			BINP		C	00	D1		15.7
	PCD→RIN	22 hita	DBIN		C	00	D2	2	43.9
		SZ DIIS	DBINP		C	00	D2	2	43.7

Classification		Instruction Condition		S	[2	Processing		
Cla	sincation		Instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(μ s)
		16 hite	MOV			00	D	2	9.1
	Transfer		MOVP			00	D	2	8.9
	Tunsier	32 hite	DMOV		[00	D	2	13.1
		32 0115	DMOVP		[00	D2		13.1
		16 hite	XCH				D0	D1	11.9
	Exchange	10 013	XCHP				D0	D1	11.9
	Lichange	32 hite	DXCH				D0	D2	21.7
Data transfer		52 013	DXCHP				D0	D2	21.7
instruction		16 hite	CML		[00	D)1	8.3
	Negative	10 510	CMLP		[00	D)1	8.3
	transfer	32 hits	DCML		[00	D	2	15.1
		01 0.00	DCMLP		[00	D	2	15.3
	Batch transfer	16 bits	BMOV		[00	D1	K5	44.4
			BMOVP			00	D1	K5	44.5
	Same data	32 bits	FMOV			00	D1	K5	25.4
	batch transfer	02 0.10	FMOVP		[00	D1	K5	25.5
			C.I	Without index qualification					7.6
	Jump			With index qualification					9.5
			SCJ	Without index qualification					13.3
				With index qualification					15.1
			JMP						7.6
			0.411	Without index qualification					13.3
Program branch			CALL	With index qualification					15.1
	Subroutine	call		Without index qualification					13.2
			CALLP	With index qualification					15.1
			RET						9.3
	Internet it i		EI						7.1
	onable/dia	gram	DI						6.5
			IRET						43.2
			QUID	Without index qualification					19.0
	Microcomp	uter	306	With index qualification					20.0
	program o	call		Without index qualification					19.0
			JUBH	With index qualification					20.0

Appendix 3.3 Application instructions

			Instruction	O a se alliti a se	5	3	D		Processing
Cla	assification		Instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time($^{\mu}$ s)
		10 hite	WAND		D	0	С	0	11.5
		TO DITS	WANDP		D	0	C0		11.5
	Logical	00 hite	DAND		D	0	C0		27.1
	product	32 DITS	DANDP		D	0	С	0	27.1
		16 bits	WAND		C0	D0	D1	00	19.3
			WANDP		C0	D0	D1	00	19.3
	Logical add	16 bits	WOR		C	:0	D	0	11.1
			WORP		C	:0	D	0	11.1
		32 bits	DOR		D	0	С	0	27.3
			DORP		D0		C0		27.3
		16 bits	WOR		D0	C0	D1	00	19.3
Laniaal			WORP		D0	C0	D1	00	19.3
Logical	Exclusive	16 bits	WXOR		C	:0	D	0	11.5
			WXORP		C	:0	D0		11.5
Instruction		32 bits	DXOR		C0		D0		27.1
	logical add		DXORP		C	:0	D	0	27.3
		40.1.1	WXOR		C0	D0	D1	0	19.3
		TO DILS	WXORP		C0	D0	D1	0	19.3
		16 hita	WXNR		C	:0	D	0	11.7
	NOT	TO DILS	WXNRP		C	:0	D	0	11.7
	NUT	22 hita	DXNR		C	:0	D	0	27.5
		32 DIIS	DXNRP		C	:0	D	0	27.5
	logical add		WXNR		C0	D0	D1	0	19.3
		16 bits	WXNRP		C0	D0	D1	0	19.5
	2's		NEG				D	0	9.5
	complement	ID DIIS	NEGP				D	0	9.5

	Classification		Instruction Condition	S	5	[)	Processing	
	assincation		mstruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(μ s)
			ROR	n=3					9.5
		16 hite	RORP	n=3					9.5
		10 5113	RCR	n=3					10.9
	Dight rotation		RCRP	n=3					10.9
	Right folation		DROR	n=3					13.7
		22 hita	DRORP	n=3					13.7
		32 DIIS	DRCR	n=3					13.5
Rotation			DRCRP	n=3					13.5
instruction			ROL	n=3					9.9
	Left rotation	16 hita	ROLP	n=3					9.9
		16 bits	RCL	n=3					11.3
			RCLP	n=3					11.5
		32 bits	DROL	n=3					13.7
			DROLP	n=3					13.1
			DRCL	n=3					14.1
			DRCLP	n=3					14.1
		101.11	SFR	n=5			D	0	13.7
			SFRP	n=5			D	0	13.7
				n=5			Ν	10	23.7
	Dight shift	TO DILS	BOLK	n=15			Ν	10	25.1
	Right Shift			n=5			Ν	10	23.5
			DOLKL	n=15			Ν	10	25.3
		22 hita	DSFR	n=5			С	0	22.5
Shift instruction		32 Dits	DSFRP	n=5			С	:0	22.7
Shint Instruction			SFL	n=5			С	:0	14.3
			SFLP	n=5			С	:0	14.3
		10 hite	DOCI	n=5			M	64	25.7
		TO DILS	BOLL	n=15			M	64	26.9
	Leit Shiit			n=5			M	64	25.9
			DOFLY	n=15			M	64	27.1
		00111	DSFL	n=5			С	:0	22.7
		32 DIIS	DSFLP	n=5			С	:0	22.9

Cl	estification		Instruction	Condition		S	D		Processing
	assincation		Instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(μ s)
	Data agarah	16 hita	SER	n=5	D0	C0			37.3
	Data search	TO DILS	SERP	n=5	D0	C0			37.5
		10 hite	SUM		C	00			23.1
	Ditabaak	TO DILS	SUMP		D	00			23.3
	BILCHECK	32 bits	DSUM		C	00			40.3
			DSUMP		C	00			40.5
	Decede	2 ⁿ bits	DECO	n=2	C	:0	D	0	32.3
	Decode		DECOP	n=2	C	:0	D	0	32.5
Data processing			ENCO	n=2	C	:0	D	0	69.5
instruction	Encode	2 DIIS	ENCOP	n=2	C0		D0		69.4
Instruction		16 bits	SEG						19.8
	Bit set	16 bits	BSET	n=5			С	0	17.7
			BSETP	n=5			C0		17.5
	Bit reset	16 bits	BRST	n=5			D0		18.7
			BRSTP	n=5			D	0	18.7
	Dissociation	401.1	UNI	n=1	C	0	D0		21.5
	Dissociation	TODILS	UNIP	n=1	C	0	D	0	21.5
	Association	16 hita	DIS	n=1	C	0	D	0	28.1
	Association	TO DILS	DISP	n=1	C	0	D	0	28.1
	\\/rito	16 hita	FIFW		C	00	С	0	55.3
	white	TO DILS	FIFWP		C	:0	D	0	20.5
FIFO Instruction	Deed	16 hita	FIFR				C0	D0	40.3
	Reau	TO DILS	FIFRP				C0	D0	40.3
		varaian	ASC						23.1
ASCII	ASCII CONV		ASC	Z					26.3
instruction		rint	PR						52.5
	ASCII p		PRC						31.5

Cla	Classification		Instruction Condition	S	5	D		Processing	
Cla	issincation		instruction	Condition	(S1)	(S2)	(D1)	(D2)	Time(μ s)
			FDOM	n=1					686.9
		16 hita	FROIVI	n=30					18583.3
		TODILS		n=1					662.5
	Data road		FROMP	n=30					18488.3
	Data read			n=1					1264.5
		22 hita	DFRU	n=15					18503.3
		32 DIIS	DFROP	n=1					1237.9
Buller memory				n=15					18368.3
instruction			то	n=1					714.7
Instruction	Data write	16 bits		n=30					19523.3
			ТОР	n=1					702.3
				n=30					19518.3
	Data write	32 bits	DTO	n=1					1371.9
				n=15					19293.3
			DTOP	n=1					1297.7
				n=15					19193.3
FOR-NEXT	D		FOR						10.1
instruction	Repetition		NEXT						7.5
Display instruction	Display reset		LEDR						56.9
			WDT						12.2
	WDTTeset		WDTP						12.2
			SLT	Device memory only					878.7
Other	Status latch		SLT	Device memory + R					2480.7
instructions			SLTR						5.8
	Compling trees		STRA						5.7
		;	STRAR						5.4
	Carry flag set		STC						5.4
	Carry flag rese	t	CLC						5.7
	Timing clock		DUTY						13.1

Appendix 4 List of Special Relays and Special Registers

Appendix 4.1 List of Special relays

The special relays are the internal relays that have specific applications in the sequencer. Therefore, the coil cannot be turned ON/OFF on the program. (Except for the ones marked by *1 or *2 in the table.)

Number	Name	Description	Details of contents
*1 M9000	Fuse blown	OFF : Normal ON : Module with fuse blown exists.	• This is ON when at least one module has a fuse blown, and stays ON even if it returns to normal later.
*1 M9002	I/O module verify error	OFF : Normal ON : Error occurred	 This is ON if the I/O module status is different from the status registered at the power up. It stays ON even if it returns to normal later.
*1 M9004	MINI link error	OFF : Normal ON : Error occurred	• This is turned ON if a module in a master station of the MINI link detects an error. It stays ON even if it returns to normal later.
*4 M9005	AC DOWN detect	OFF : No AC DOWN ON : AC DOWN occurred	 This is turned ON when there is a momentary power interruption for 20ms or less, and is reset when the power is turned ON after it was turned OFF.
M9006	Battery low	OFF : Normal ON : Battery low	 This is turned ON when the battery voltage drops below the specified level, and turned OFF when the battery voltage returns to normal.
*1 M9007	Battery low latch	OFF : Normal ON : Battery low	 This is turned ON when the battery voltage drops below the specified level, and stays ON even if the battery voltage returns to normal.
*1 M9008	Self-diagnosis error	OFF : No error ON : Error occurred	 This is turned ON when an error is detected as a result of a self- diagnosis.
M9009	Annunciator detect	OFF : Not detected ON : Detected	 This is turned ON when the OUT F or SET F instruction is executed, and turned OFF when the contents of the D9124 becomes 0.
*1 M9011	Operation error flag	OFF : No error ON : Error occurred	 This is turned ON when a operation error occurs while the application instruction is executed, and stays ON even if it returns to normal.
M9012	Carry flag	OFF : Carry OFF ON : Carry ON	 This is a carry flag used during the application instruction.
M9016	Data memory clear flag	OFF : No processing ON : Clear the output	 When M9016 is ON, it clears all data memory (except for the special relays and registers) including the area that are latched by the remote RUN from the computer.
M9017	Data memory clear flag	OFF : No processing ON : Clear the output	 When M9017 is ON, it clears all data memory (except for the special relays and registers) that are not latched by the remote RUN from the computer.
M9020	User timing clock No. 0		• Relays that repeat ON/OFF by a constant scan interval.
M9021	User timing clock No. 1	n2 n2 Scan Scan	 Starts from OFF when the power supply is turned ON or reset. Sets the ON/OFF interval by the DUTY instruction.
M9022	User timing clock No. 2		
M9023	User timing clock No. 3	Scan	DUTY n1 n2 M9020
M9024	User timing clock No. 3		1

Appendix Table 4.1 List of Special Relays

Number	Name	Description	Details of contents
	Clock data set request		After the END instruction is executed during a scan in which the
*2 M9025	Cluck udia sei reguesi	ON : Set request exists	M9025 changes from OFF to ON, the clock data stored in D9025 to D9028 is written into the clock device.
M9026	Clock data error	OFF : No error ON : Error occurred	ON when an error occurred in the value of the clock data (D9025 to D9028), and OFF when there is no error.
*2 M9028	Clock data read request	OFF : No processing ON : Read request	When the M9028 is ON, the clock data is loaded to D9025 to D9028 as a BCD value.
*2 M9029	Batch processing of data communication request	OFF : Batch processing is not executed. ON : Batch processing is executed.	 By turning ON the M9029 from the sequence program, the data communication requests which are received during one scan are processed by the END processing of the same scan. Batch processing of the data communication requests can be changed to ON/OFF during the RUN. The default is OFF. (One data communication request is processed per each END processing in the order the requests are received.)
M9030	0.1s clock	0.05s 0.05s	 0.1s, 0.2s, 1s, 2s, and 1min clocks are generated. These are not turned ON/OFF at each scan, but turned ON/OFF
M9031	0.2s clock	0.1s 0.1s	after the specified time interval even during a scan.
M9032	1s clock	0.5s 0.5s	
M9033	2s clock	_1s _1s	
M9034	1min clock	30s	
M9036	Always ON	ON OFF	Used for the initialization or as a dummy contact by application instructions in the sequence program.
M9037	Always OFF	ON OFF	The M9036 and M9037 are turned ON and OFF regardless of the key switch status on the CPU front panel, while the M9038 and
M9038	ON for one scan only after the RUN started.	ON OFF	M9039 change depending on the key switch status. OFF when the key switch is set at STOP. When the key switch is not set at STOP, the M9038 is turned ON for one scan only and the M9039
M9039	RUN flag OFF for one scan only after the RUN started.	ON OFF	is turned OFF for one scan only.
M9040	PAUSE enable coil	OFF : PAUSE disable ON : PAUSE enable	• When the RUN key switch is set at the PAUSE position or the remote PAUSE contact is ON, if the M9040 is ON, it will be in the
M9041	PAUSE status contact	OFF : Not in PAUSE status ON : In PAUSE status	PAUSE status and the M9041 will be turned ON.
M9042	Stop status contact	OFF : Not in STOP status ON : In STOP status	Turned ON when the RUN key switch is set at the STOP position.
M9043	Sampling trace completed	OFF : Sampling trace in progress ON : Sampling trace completed	After the STRA instruction is executed, this is turned ON when the sampling trace is completed for the number of times specified by the peripheral device. Then it is reset by executing the STRAR instruction.
M9044	Sampling trace	$0 \rightarrow 1$ Same as executing <u>STRA</u> $1 \rightarrow 0$ Same as executing <u>STRAR</u>	Pseudo <u>STRA</u> / <u>STRAR</u> instruction can be executed by turning ON/OFF M9044. (Forcibly turn ON/OFF M9044 from the peripheral device.) <u>STRA</u> instruction when the M9044 changes from OFF to ON <u>STRAR</u> instruction when the M9044 changes from ON to OFF The sampling trace condition depends on the D9044.
M9045	Watchdog timer (WDT) reset	OFF : WDT is not reset. ON : WDT is reset.	 By turning the M9045 ON, WDT is reset while the ZCOM instruction or the batch processing of the data communication requests is executed. (Used when the scan time exceeds 200ms.)

Appendix Table 4.1 List of Special Relays (Continued)

Number	Name	Description	Details of contents
M9046	Sampling trace	OFF : Trace is not in progress. ON : Trace is in progress.	ON while the sampling trace is executed.
M9047	Sampling trace standby	OFF : Abort sampling trace ON : Start sampling trace	 The sampling trace cannot be executed unless the M9047 is turned ON. The sampling trace is stopped when the M9047 is turned OFF.
M9049	Number of output characters switch	OFF : Output until the NUL code ON : Output 16 characters	 When M9049 is OFF, the characters up to the NUL(00H) code are sent to the output. When the M9049 is ON, 16 characters of ASCII code are sent to the output.
M9051	CHG instruction execution disable	OFF : Enable ON : Disable	 Turn it ON to disable executing the CHG instruction. Turn it ON when the program transfer is requested and it is automatically turned OFF when the transfer is finished.
*2 M9052	SEG instruction switch	OFF : 7-segment display ON : Refresh of the I/O part	 Refresh of the I/O part instruction is executed when the M9052 is ON. 7-SEG display instruction is executed when the M9052 is OFF.
M9054	STEP RUN flag	OFF : Step RUN is not in progress. ON : Step RUN is in progress.	Turned ON when the RUN switch is at step RUN.
M9055	Status latch complete flag	OFF : Not finished ON : Finished	 Turned ON when the status latch is completed. Turned OFF by a reset instruction.
M9065	Split processing execution detect	OFF : Split processing is not in progress. ON : Split processing is in progress.	• Turned ON while the instructions to the AD57(S1) and AD58 are processed by split processing, and turned OFF when the execution is finished (not in split processing).
*2 M9066	Split processing request flag	OFF : Batch processing ON : Split processing	 For a instruction to the AD57(S1) and AD58 which requires a long processing time, the instruction is split and processed by turning ON the M9066 because the scan time is substantially extended.
*2 M9070	Search time by A8CPU	OFF : No acceleration of the readout time ON : Acceleration of the readout time	 By turning this ON, the search time by the A8UPU can be reduced. (In this case, the scan time of the CPU is extended by 10%.)
M9081	BUSY signal of the communication request register area	OFF : Space left in the communication request register area ON : No space left in the communication request register area	 There are 32 areas for registering the execution standby instruction (FROM/TO) to the MNET/MII(-S3), and this is turned ON when there is no available space for registering.
*2 M9084	Error check	OFF : Execute the error check ON : No error check	 Set if the following error checks are executed when the END instruction is processed. (In order to reduce the time for processing the END instruction.) Fuse blown check, I/O module matching check. Battery check.
*1 M9091	Instruction error flag	OFF : No error ON : Error occurred	 Turned ON when an error related to the instruction occurs. It stays ON even if it returns to normal afterwards.
M9100	SFC program exists or not	OFF : No SFC program ON : SFC program exists	 Turned ON when the SFC program is registered and the work area for the SFC is secured. Turned OFF when the SFC program is not registered or the work area for the SFC could not be secured.

Number	Name	Description	Details of contents
*2 M9101	Start/stop of the SFC program	OFF : Stop the SFC program ON : Start the SFC program	• Turned ON by the user to start the SFC program. When this is OFF, the output of the executing step is turned OFF and the SFC program is stopped.
*2 M9102	Startup status of the SFC program	OFF : Initial start ON : Continue Start	 When the SFC program is restarted by the M9101, the startup step is selected. ON : Clears all execution status at the moment when the SFC program was stopped, and starts up from the initial step of block 0. OFF : Starts up from the execution block and execution step of the moment when the SFC program was stopped. Once turned ON, it is latched (power failure compensation) by the system.
*2 M9103	Continuous migration or not	OFF : No continuous migration ON : Execute the continuous migration	 When all conditions for migrating the continuous steps are met, select whether all steps which meet the conditions in one scan should be executed or not. ON : Execute continuously. (Continuous migration) OFF : Execute one step per scan. (No continuous shift)
M9104	Continuous migration inhibit flag	OFF : When the migration is finished. ON : When the migration is not executed.	This is ON when the continuous migration exists but not in progress, and OFF when the migration for one step is finished. Add M9104 by AND logic to the migration conditions to inhibit the continuous migration of the applicable step.
*2 M9108	Start the step migration monitor timer (applies to D9108)	OFF : Reset the monitor timer ON : Start the monitor	 Turn this ON to start measurement of the step migration monitor timer. The monitor timer is reset when this is turned OFF.
*2 M9109	Start the step migration monitor timer (applies to D9109)	timer reset	
*2 M9110	Start the step migration monitor timer (applies to D9110)		
*2 M9111	Start the step migration monitor timer (applies to D9111)		
*2 M9112	Start the step migration monitor timer (applies to D9112)		
*2 M9113	Start the step migration monitor timer (applies to D9113)		
*2 M9114	Start the step migration monitor timer (applies to D9114)		
M9180	Active sampling trace complete flag	OFF : Trace start ON : Trace complete	 Turned ON when the sampling traces of all specified blocks are finished. Turned OFF when the sampling trace is started.
M9181	Active sampling trace execution flag	OFF : Trace is not execution ON : In trace execution	Turned ON while the sampling trace is in progress and turned OFF when finished or aborted.

Appendix Table 4.1 List of S	Special Relays (Continued)
------------------------------	----------------------------

Number	Name	Description	Details of contents								
*2 M9182	Active step sampling trace enable	OFF : Trace disable/abort ON : Trace enable	 Enable/disable of executing the sampling trace is selected. ON : Execution of the sampling trace is allowed. OFF : Execution of the sampling trace is prohibited. The trace is aborted if this is turned OFF while the sampling trace is being executed. 								
*2 M9196	Operation output when the block is stopped	OFF : Coil output OFF ON : Coil output ON	 Operation output when the block is stopped is selected. ON : The ON/OFF status of the coil, which was used by the operation output of the step being executed at the time when the block was stopped, is retained. OFF : All of the coil outputs are turned OFF. (The operation output by the SET instruction is retained reagedlease of ON/OFE of the M0106.) 								
M9197 M9198	Display selection between fuse blown and I/O verify error	The display is switched depending on the combinations of ON/OFF of the M9197 and ON/OFF of the M9198.	M9197 M9198 Display range OFF OFF Status of X/Y0 to 7F0 ON OFF Status of X/Y800 to FF0 OFF ON Status of X/Y1000 to 17F0 ON ON Status of X/Y1000 to 17F0 ON ON Status of X/Y1800 to 1FF0 ON ON Status of X/Y1800 to 1FF0 ON ON Status of X/Y1800 to 1FF0 • The I/O module numbers of the fuse blown module display (D9100 to D9107) and the I/O module verify error display (D to D9123) are switched. • Evenute the switching of display at the END								
M9199	Data recovery of the on-line sampling trace status latch	OFF : No data recovery ON : Perform data recovery	 When the sampling trace/status latch is executed, the setup data stored in the CPU is recovered for starting again. Turn ON the M9199 when executing again. (It is not necessary to write data again from the peripheral device.) 								

Appendix	Table 4.1	List of	Special	Relays	(Continued)
					· · · · · · /

POINT

(1) The content of the special relay M is turned "OFF" when any of the following is executed; turning off the power supply, latch clear operation, reset operation by the reset key switch. The contents are preserved when the RUN key switch is in the "STOP" position.

- (2) The special relays marked by *1 in the list maintain "ON" even after the status returns to normal. Therefore, use the following methods to turn it "OFF":
- 1 From the user program Reset execution instruction Insert the circuit shown to the right in the RST M9000 program, and turn ON the reset execution Put the special relay to reset. instruction contact to clear the special relay M. 2 From the peripheral device Force reset by the test function of the peripheral device. Refer to the manual of each peripheral device for the operation. 3 It can be turned "OFF" by flipping the reset key switch on the CPU front panel to the reset side. (3) For the relays marked by *2, ON/OFF can be controlled by the sequence program. (4) For the relays marked by *3, ON/OFF can be controlled by the test mode of the peripheral device. (5) For the relays marked by *4, they can be reset only when the power supply is turned ON from OFF.

Appendix 4.2 List of Special registers

The special registers are data registers having predetermined applications in the PC. Therefore, data should not be written to these registers (except those marked *1 and *2 in the table) in the program. Data should not be written to the registers not given in the table, either.

Number	Name	Description	Details of contents						
D9000	Fuse blown	Module number of the fuse blown	 When the module with a fuse blown is detected, the smallest number of the detected module is stored in hex. (Example: When the fuse of the output module Y50 to 6F is blown, "50" in hex is stored.) Monitor in hex to monitor from a peripheral device. (It is cleared when the contents of D9100 to D9107 become all 0.) 						
D9002	I/O module verify error	Module number of the I/O module verify error	 When an output module other than the one registered at the power supply startup is detected, the head of the smallest I/O number of the detected module is stored in hex. (The storing method is the same as that for D9000.) Monitor in hex to monitor from a peripheral device. (It is cleared when the contents of D9116 to D9123 become all 0.) 						
*1 D9004	MINI link error	Set by the parameter Status of (1 to 8 units) are stored.	 The error detect status of the MINI(S3) link is stored to the installed A1SJ71PT32-S3. b15 to b8 b7 to b0 b16 to b8 b7 to b0 b17 to b1 to b8 b7 to b0 b18 to b1 to						
*4 D9005	AC DOWN counter	Number of AC DOWN times	• Every time the input voltage drops below 80% of the rated voltage during the operation by the CPU module, the value is incremented by one and stored in BIN code.						
*1 D9008	Self-diagnosis error	Self- diagnosis error number	 The error number of the error which occurred during the self- diagnosis is stored in BIN code. 						
D9009	Annunciator detected	F-number where the external failure occurred.	 When one of F0 to 2047 is turned ON by OUT F or SET F, the F-number which was turned ON and detected first is stored in BIN code. The D9009 can be cleared by executing the RST F or LEDR instruction. If another F-number is detected, the next number is stored in D9009 when D9009 is cleared. 						
D9010	Error step	Step number where the operation error occurred.	 When access failed to the module which has the setting of the special module at the transition from STOP to RUN, the module number of the special module is stored. When a operation error occurred while executing the application instruction, the step number where the error occurred is stored in BIN code and the contents of the D9010 is updated every time the operation error occurs after that. 						
D9011	Error step	Step number where the operation error occurred.	 When a operation error occurred while executing the application instruction, the step number where the error occurred is stored in BIN code. The contents of the D9011 cannot be updated unless M9011 is cleared by the user program, because the storing to D9011 is executed when M9011 changes from OFF to ON. 						
D9014	I/O control method	I/O control method number	 The I/O control method is returned as the following number. 3. Refresh method for both input and output. 						

Appendix Table 4.2 List of Special Registers

Number	Name	Description	Details of contents								
	CPU operation status	CPU operation status	• The CPU's operation status is stored in the D9015 as shown in								
D9015			the following diagram BI5 BI2B11 BBB7 B4B3 B0 Key switch of the CPU Not changed by the remote RUIN/STOP O RUN I STOP 2 PAUSE *1 3 STEP RUN Remote RUN/STOP by the parameter setting O RUN I STOP 2 PAUSE *1 Program status O Status other than the one below I Executing STOP 2 PAUSE *1 C RUN C RUN								
			in RUN status and the M9040 is OFF.								
D9016	Program number	The sequence program being executed is stored as a BIN value.	 The sequence program which is currently being executed is stored by the code number as follows: 1 : ROM 8 : E²PROM 1 : RAM 								
D9017	Scan time	Minimum scan time (in 10ms unit)	• For each END, if the scan time is smaller than that of the D9017, the value is stored. In other words, the minimum value of the scan time is stored in the D9017 as a BIN code.								
D9018	Scan time	Scan time (in 10ms unit)	 For each END, the scan time is stored as a BIN code and always updated. 								
D9019	Scan time	Maximum scan time (in 10ms unit)	• For each END, if the scan time is larger than that of the D9019, the value is stored. In other words, the maximum value of the scan time is stored in the D9019 as a BIN code.								
D9020	Constant scan	Constant scan time (set in 10ms unit) by the user	 The execution interval is set in 10ms unit when the user program is executed at a constant interval. 0 : No constant scan function 1 to 20 : Constant scan function is available. Executed at an interval of setting value × 10ms. 								
D9021	Scan time	Scan time (in 1ms unit)	 For each END, the scan time is stored as a BIN code and always updated. 								
D9022	Time	Time	Incremented by one for every second.								

Number	Name	Description	Details of contents					
	Clock data	Clock data (year, month)	 Year (the last two digits) and month are stored as BCD code in the D9025 as follows. 					
*2 D9025			B15B12B11B8B7B4B3B0 Year Month Example: July 1997 H9707					
*2 D9026	Clock data	Clock data (day, hour)	Day and hours are stored as BCD code in the D9026 as follows. B15B12B11B8B7B4B3B0 Day Hours Example: 31st, 10 o'clock H3110					
*2 D9027	Clock data	Clock data (minute, second)	Minutes and seconds are stored as BCD code in D9027 as follows. B15B12B11B8B7B4B3B0 Minutes Seconds Example: 35 minutes, 48 seconds H33548					
*2 D9028	Clock data	Clock data (day of the week)	Day of the week is stored as BCD code in D9028 as follows.					
D9035	Expanded file register	Block number being used	• The block number of the expanded file register which is currently being used is stored as BIN code.					
D9036	For specifying the device number of the expanded file register	Device number when each device of the extended file register is directly accessed	 To directly read from and write to an extended file register, specify the device number of the extended file register by two words of BIN value in the D9036 and D9037. The device number is independent of the block number and is specified by a serial number from R0 of block No.1. 					
D9037			Expanded file register 0 16383 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16385 16384 16385 16384 16385 16385 16384 16385 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 163555 1635555 163555 1635555 16355555 1635555 1635555 1635555 1635555 16355555 16355555 16355555 163555555 163555555 163555555 163555555 16355555555 163555555555555 163555555555555555555555555555555555555					

Number	Name	Description	Details of contents							
	LED display priority	Priority 1 to 4	• Set and change the element number in the LED display of the CPU module. (Priority 1 to 4 are in the D9038 and 5 to 7 are in the D9039.)							
*2 D9038			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
			Priority Even if "0" is set, the error which stops the operation of the CPU Number Description							
		Priority 5 to 7	(including the parameter setting) is displayed on the LED UO matching, 1. transfer UO matching, 1. transfer UO matching,							
*2			Default values : D9038=H4321 D9039=H0765 2. link parameter, operation error							
D9039			CHK instruction error 4. Annunciator 5. LED instruction related 6. Patters error							
			7. Clock data							
D9044	For the sampling trace	Step or time of the sampling trace	• When the M9044 is turned ON/OFF in peripheral device and the sampling trace <u>STRA</u> or <u>STRAR</u> is activated, the value stored in the D9044 as a sampling trace condition is used.							
			For scan ———— 0 For time ———— time (in 10ms unit) Stored in BIN code.							
D9049	Work area for the SFC	Block number of the expanded file register	The block number of the expanded file register which is used as a work area for the SFC is stored. Upper 8 bits							
D9050	Error number of the SFC program	Number of the error which occurred in the SFC program	 The error number which occurred in the SFC program is stored as a BIN value. 0 : No error 80: Parameter error of the SFC program 81: Number of steps to be executed simultaneously exceeded the limit. 82: Block startup error 83: Operation error of the SEC program 							
D9051	Error block	Block number where the error occurred	• The block number where the error occurred in the SFC program is stored as a BIN value. When error 82 occurs, however, the block number of the startup source is stored.							
D9052	Error step	Step number where the error occurred	The step number where error 83 occurred in the SFC program is stored as a BIN value. "0" is stored when error 80 or 81 occurs. When error 82 occurs, the step number of the block startup is stored.							
D9053	Error migration	Migration condition number where the error occurred	The migration condition number where error 83 occurred in the SFC program is stored as a BIN value. "0" is stored when error 80, 81, or 82 occurred.							
D9054	Error sequence step	Sequence step number where the error occurred	• In the migration condition or step where error 83 occurred in the SFC program, the order of the sequence step (n-th step) in the migration condition or operation output where the error occurred is stored as a BIN value.							
D9055	Status latch	Status latch step	• The number of the step which was being executed at the time of the status latch is stored as a BIN code.							
D9072	PC communication check	Data check of the computer link	Used for the self-loopback check.							
D9081	Number of empty areas of the communication request register area	Number of available spaces of the communication request register area	• The number of available spaces in the communication request register area to the MNET/MINI(-S3) is stored. (a maximum of 32)							

Number	Name	Description	Details of contents						
D9085	Time check value setting register	The default value is 10s.	 The time check value, which is used when the link instruction (ZNRD, ZNWR) for the MELSECNET/10 is executed, is stored. Setting range : 1 to 65535s Setting unit : in 1s unit The default value, 10s, is used when 0 is set. 						
*1 D9090	Number of special function modules over	Number of special function modules over	• When the number of special function modules exceeds the limit, the starting I/O number of the last special function module which could be registered is divided by 16 and stored as a BIN value.						
*1 D9091	Detailed error number	Detailed error number of the self-diagnosis	The detailed error number of the self-diagnosis is stored in BIN code.						
D9100	Module with a fuse blown	Bit pattern of the modules with a fuse blown in	• The output module numbers (in 16-point unit) with a fuse blown is stored as a bit pattern. (The setting number is stored if it is set by						
D9101		re-point unit.	 The fuse blown status of the output modules in the remote station can also be detected 						
D9102			15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
D9103			D9100 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0						
D9104			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
D9105			Indicates the fuse-blown status.						
D9106			• The I/O module number range to be displayed can be selected by switching ON/OFF of the M9197 and M9198.						
D9107			• Clearing data of the fuse blown module can be executed by turning the M9000 (fuse blown) OFF.						
D9116	I/O module verify error	Bit pattern of the modules with verify error in	When a different I/O module which is different from the one registered when the power was turned ON is detected, such I/O module number (in 16 point unit) is stored. (The I/O module is the turned of turn						
D9117			number set by the parameter is stored if set by the parameter.)						
D9118			detected.						
D9119			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
D9120			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
D9121			▲ Indicates an I/O module verify error.						
D9122			• The I/O module number range to be displayed can be selected by switching ON/OFE of the M9197 and M9198						
D9123			 Clearing data of the matching error can be executed by turning M9002 (matching error) OFF. 						
D9124	Number of items detected by the annunciator	Number of items detected by the annunciator	The content of the D9124 increments by 1 when one of F0 to 2047 is turned ON by <u>OUT F</u> or <u>SET F</u> , and the content of the D9124 decrements by 1 when <u>RST F</u> or <u>LEDR</u> instruction is executed. The number of items which were turned ON by <u>OUT F</u> or <u>SET F</u> is stored up to 8.						

Appendix Table 4.2 List of Special Registers (Continued)

Number	Name	Description	Details of contents														
	Annunciator detect	Annunciator detect	When one of F0 to 2047 is turned ON by OUT F or SET F,														
D9125	number	number	the F-number which was turned ON is registered in D9125 to D9132							ed in D9125 to D9132							
			in the	eir c	orde	er.											
			The F	-nı	umt	pers	s wl	hich	n we	ere	turr	ned	I OF	FŁ	зу	R	ST F are deleted
D9126			from	D9	125	5 to	D9	132	2, th	nen	mo	ve	d to	the	e da	ta	register which is after
			the d	ata	reg	gist	er tl	hat	the	e de	lete	ed r	num	ibei	r ha	d b	een stored. The
			conte	ents	s of	D9	125	5 to	91	32 a	are	shi	ftec	d up	owa	ds	by one by executing
50407			the	LE	EDR	2	inst	truc	tio	n. V	Vhe	en tl	here	e ai	re 8	ite	ems which were
D9127			detec	tec	l by	' the	e ar	nnui	nci	ator	, th	e 9)th i	s n	ot s	tor	ed in D9125 to 9132
			even	if it	t is	det	ecte	ed.									
				c	ET 91	ст е	ET 91	ET 95	ст e	ET 95	-	TO	-	T 95	т		
D9128				F	50 F	25 F	99 F	25 F1	15 F	70 F6	55 F3	38 F1	10 F1	51 F2	10 10	R	
			D9009	0	50	50	50	50	50	50	50	50	50	50	50	50	···· (Detect number)
			D9124	0	1	2	3	2	3	4	5	6	7	8	8	8	···· (Number of detected items)
D9129			-						-		-	-		-	-	_)
			D9125	0	50	50	50	50	50	50	50	50	50	50	50	50	
			D9126	0	0	25	25	99	99	99	99	99	99	99	99	15	
D9130			D9127	0	0	0	99	0	15	15	15	15	15	15	15	70	
			D9128	0	0	0	0	0	0	70	70	70	70	70	70	65	(Data starssheet)
D0404			D9129	0	0	0	0	0	0	0	65	65	65	65	65	38	(Detect number)
D9131			D9130	0	0	0	0	0	0	0	0	38	38	38	38	110	
			D9131	0	0	0	0	0	0	0	0	0	110	110	110	151	
D0132			D9132		0	0	0		0	0	0	0		151	151	210	
09132			63132		0	0	0	5	0	9	0	0		131	131	- 10	J

POINT

(1) All of the contents are cleared when any of the following is executed; turning off the power, latch clear operation, reset operation. The contents are preserved when the RUN key switch is in "STOP" position.

(2) The contents of the special registers marked by *1 in the above list cannot be cleared even after the status returns to normal. Therefore, use the following methods to clear the contents:

1 From the user program

Insert the circuit shown to the right in the program, and turn ON the clear execution instruction contact to clear the contents of the register.

2 From the peripheral device

Use the current value modification function of the test function or force reset from the peripheral device to change to 0. Refer to the manual of each peripheral device for the operation.

- 3 It can be changed to "0" by flipping the reset key switch on the CPU front panel to the reset side.
- (3) For the registers marked by *2, the data is written by the sequence program.
- (4) For the registers marked by *3, the data is written by the test mode of the peripheral device.
- (5) For the registers marked by *4, it is cleared only when the power is turned ON from OFF.

MEMO

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing onsite that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

- (1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi programmable controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable controller applications.

In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.
Type A1FXCPU Module

User's Manual (Function description)

MODEL A1FXCPU-U-E-KINOU

13JL59

MODEL CODE

SH(NA)-4002-D(0707)MEE

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.